Singular Value Decomposition on GPU using CUDA

被引:0
|
作者
Lahabar, Sheetal [1 ]
Narayanan, P. J. [1 ]
机构
[1] Int Inst Informat Technol, Ctr Visual Informat Technol, Hyderabad, Andhra Pradesh, India
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Linear algebra algorithms are fundamental to many computing applications. Modern GPUs are suited for many general purpose processing tasks and have emerged as inexpensive high performance co-processors due to their tremendous computing power In this paper; we present the implementation of singular value decomposition (SVD) of a dense matrix on GPU using the CUDA programiming model. SVD is implemented using the twin steps of bidiagonalization followed by diagonalization. It has not been implemented on the GPU before. Bidiagonalization is implemented using a series of Householder transfomations which map well to BLAS operations. Diagonalization is performed by applying the implicitly, shifted QR algorithm. Our complete SVD implementation outperforms the MATLAB and Intel (R) Math Kernel Library (MKL) LAPACK implementation significantly on the CPU. We show a speedup of upto 60 over the MATLAB implementation and upto 8 over the Intel MKL implementation on a Intel Dual Core 2.66GHz PC on NVIDIA G7X 280 for large matrices. We also give results for very large matrices on NVIDIA Tesla S1070.
引用
收藏
页码:840 / 849
页数:10
相关论文
共 50 条
  • [41] Using singular value decomposition approximation for collaborative filtering
    Zhang, S
    Wang, WH
    Ford, J
    Makedon, F
    Pearlman, J
    [J]. CEC 2005: Seventh IEEE International Conference on E-Commerce Technology, Proceedings, 2005, : 257 - 264
  • [42] Hyperspectral pixel unmixing using singular value decomposition
    Ball, JE
    Kari, S
    Younan, NH
    [J]. IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 3253 - 3256
  • [43] Video shot segmentation using singular value decomposition
    Cerneková, Z
    Kotropoulos, C
    Pitas, I
    [J]. 2003 INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL II, PROCEEDINGS, 2003, : 301 - 304
  • [44] Ultrasound Image Despeckling using Singular Value Decomposition
    Subhamathi, Ajitha R.
    [J]. PROCEEDINGS OF THE 2015 IEEE RECENT ADVANCES IN INTELLIGENT COMPUTATIONAL SYSTEMS (RAICS), 2015, : 82 - 86
  • [45] Background Subtraction using Adaptive Singular Value Decomposition
    Günther Reitberger
    Tomas Sauer
    [J]. Journal of Mathematical Imaging and Vision, 2020, 62 : 1159 - 1172
  • [46] A Hybrid Watermarking Technique Using Singular Value Decomposition
    Stanescu, Daniela
    Borca, Daniel
    Groza, Voicu
    Stratulat, Mircea
    [J]. 2008 IEEE INTERNATIONAL WORKSHOP ON HAPTIC AUDIO VISUAL ENVIRONMENTS AND THEIR APPLICATIONS, 2008, : 166 - 170
  • [47] Video shot segmentation using singular value decomposition
    Cerneková, Z
    Kotropoulos, C
    Pitas, I
    [J]. 2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PROCEEDINGS: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING SIGNAL, PROCESSING EDUCATION, 2003, : 181 - 184
  • [48] Unsupervised Feature Extraction Using Singular Value Decomposition
    Modarresi, Kourosh
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2015 COMPUTATIONAL SCIENCE AT THE GATES OF NATURE, 2015, 51 : 2417 - 2425
  • [49] On Visual Periodicity Estimation Using Singular Value Decomposition
    Nidal Kamel
    Ibrahim Kajo
    Yassine Ruichek
    [J]. Journal of Mathematical Imaging and Vision, 2019, 61 : 1135 - 1153
  • [50] Undirect knowledge discovery by using singular value decomposition
    Maltseva, E
    Pizzuti, C
    Talia, D
    [J]. DATA MINING II, 2000, 2 : 505 - 514