Relative Height Error Estimation Method for TanDEM-X DEM Products

被引:0
|
作者
Gonzalez, Carolina [1 ]
Braeutigam, Benjamin [1 ]
Martone, Michele [1 ]
Rizzoli, Paola [1 ]
机构
[1] German Aerosp Ctr DLR, Microwaves & Radar Ins, Cologne, Germany
来源
10TH EUROPEAN CONFERENCE ON SYNTHETIC APERTURE RADAR (EUSAR 2014) | 2014年
关键词
D O I
暂无
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement), an innovative SAR interferometer consisting of two formation-flying satellites, opens a new era in spaceborne radar remote sensing. The main objective of the mission is to generate an accurate digital elevation model (DEM) of the Earth, homogeneous in quality and unprecedented in accuracy. This paper presents a description of the technique to quantify the DEM performance in terms of the linear point-to-point relative height error, solely based on the data of the TanDEM-X products. First results obtained from TanDEM-X intermediate DEMs of different land cover types are shown.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] BEYOND THE 12M TANDEM-X DEM
    Zhu, Xiao Xiang
    Lachaise, Marie
    Adam, Fathalrahman
    Shi, Yilei
    Eineder, Michael
    Bamler, Richard
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [42] TanDEM-X Mission Status and Final DEM Performance
    Bueso-Bello, Jose-Luis
    Wecklich, Christopher
    Borla-Tridon, Daniela
    Gonzalez, Carolina
    Martone, Michele
    Kraus, Thomas
    Bachmann, Markus
    Rizzoli, Paola
    Zink, Manfred
    2017 18TH INTERNATIONAL RADAR SYMPOSIUM (IRS), 2017,
  • [43] THE GLOBAL TANDEM-X DEM - A UNIQUE DATA SET
    Zink, Manfred
    Moreira, Alberto
    Bachmann, Markus
    Rizzoli, Paola
    Fritz, Thomas
    Hajnsek, Irena
    Krieger, Gerhard
    Wessel, Birgit
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 906 - 909
  • [44] THE NEW TANDEM-X DEM CHANGE MAPS PRODUCT
    Lachaise, Marie
    Gonzalez, Carolina
    Rizzoli, Paola
    Schweisshelm, Barbara
    Zink, Manfred
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5432 - 5435
  • [45] Assessment of TanDEM-X DEM 2020 Data in Temperate and Boreal Forests and Their Application to Canopy Height Change
    Schlund, Michael
    von Poncet, Felicitas
    Wessel, Birgit
    Schweisshelm, Barbara
    Kiefl, Nadine
    PFG-JOURNAL OF PHOTOGRAMMETRY REMOTE SENSING AND GEOINFORMATION SCIENCE, 2023, 91 (02): : 107 - 123
  • [46] Assessment of TanDEM-X DEM 2020 Data in Temperate and Boreal Forests and Their Application to Canopy Height Change
    Michael Schlund
    Felicitas von Poncet
    Birgit Wessel
    Barbara Schweisshelm
    Nadine Kiefl
    PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2023, 91 : 107 - 123
  • [47] A Deep Learning Framework for the Estimation of Forest Height From Bistatic TanDEM-X Data
    Carcereri, Daniel
    Rizzoli, Paola
    Ienco, Dino
    Bruzzone, Lorenzo
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 8334 - 8352
  • [48] Radar Forest Height Estimation in Mountainous Terrain Using Tandem-X Coherence Data
    Chen, Hao
    Cloude, Shane R.
    Goodenough, David G.
    Hill, David A.
    Nesdoly, Andrea
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (10) : 3443 - 3452
  • [49] Seasonal Differences in Forest Height Estimation From Interferometric TanDEM-X Coherence Data
    Olesk, Aire
    Voormansik, Kaupo
    Vain, Ants
    Noorma, Mart
    Praks, Jaan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (12) : 5565 - 5572
  • [50] Forest Height Estimation With TanDEM-X SAR and InSAR Features Using Deep Learning
    Mahesh, Ragini Bal
    Hansch, Ronny
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21