Total domination in planar graphs of diameter two

被引:6
|
作者
Henning, Michael A. [1 ]
McCoy, John [1 ]
机构
[1] Univ Kwazulu Natal, Sch Math Sci, ZA-3209 Pietermaritzburg, South Africa
基金
新加坡国家研究基金会;
关键词
Diameter; Planar graphs; Total domination; HYPERGRAPHS;
D O I
10.1016/j.disc.2009.05.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
MacGillivary and Seyffarth [G. MacGillivray, K. Seyffarth, Domination numbers of planar graphs, J. Graph Theory 22 (1996) 213-229] proved that planar graphs of diameter two have domination number at most three. Goddard and Henning [W. Goddard, M.A. Henning, Domination in planar graphs with small diameter,J. Graph Theory 40 (2002) 1-25] showed that there is a unique planar graph of diameter two with domination number three. It follows that the total domination number of a planar graph of diameter two is at most three. In this paper, we consider the problem of characterizing planargraphs with diameter two and total domination number three. We say that a graph satisfies the domination-cycle property if there is some minimum dominating set of the graph not contained in any induced 5-cycle. We characterize the planar graphs with diameter two and total domination number three that satisfy the domination-cycle property and show that there are exactly thirty-four such planar graphs. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:6181 / 6189
页数:9
相关论文
共 50 条
  • [31] Total domination in graphs
    Arumugam, S
    Thuraiswamy, A
    ARS COMBINATORIA, 1996, 43 : 89 - 92
  • [32] Structure and pancyclicity of maximal planar graphs with diameter two
    Shu-Yu Cui
    Yiqiao Wang
    Danjun Huang
    Hongwei Du
    Weifan Wang
    Journal of Combinatorial Optimization, 2022, 43 : 1 - 27
  • [33] Coloring the square of maximal planar graphs with diameter two
    Wang, Yiqiao
    Huo, Jingjing
    Kong, Jiangxu
    Tan, Qiuyue
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 459
  • [34] Structure and pancyclicity of maximal planar graphs with diameter two
    Cui, Shu-Yu
    Wang, Yiqiao
    Huang, Danjun
    Du, Hongwei
    Wang, Weifan
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 43 (01) : 1 - 27
  • [35] THE DIAMETER OF EDGE DOMINATION CRITICAL GRAPHS
    PARIS, M
    NETWORKS, 1994, 24 (04) : 261 - 262
  • [36] The Diameter of Connected Domination Critical Graphs
    Zhao Chengye
    Cao Feilong
    ARS COMBINATORIA, 2012, 107 : 537 - 541
  • [37] ON THE TOTAL DOMINATION NUMBEROF TOTAL GRAPHS
    Cabrera-Martinez, Abel
    Sanchez, Jose L.
    Sigarreta Almira, Jose M.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (03) : 933 - 951
  • [38] Total Domination Versus Domination in Cubic Graphs
    Joanna Cyman
    Magda Dettlaff
    Michael A. Henning
    Magdalena Lemańska
    Joanna Raczek
    Graphs and Combinatorics, 2018, 34 : 261 - 276
  • [39] Domination and Total Domination Contraction Numbers of Graphs
    Huang, Jia
    Xu, Jun-Ming
    ARS COMBINATORIA, 2010, 94 : 431 - 443
  • [40] On graphs with equal total domination and Grundy total domination numbers
    Dravec, Tanja
    Jakovac, Marko
    Kos, Tim
    Marc, Tilen
    AEQUATIONES MATHEMATICAE, 2022, 96 (01) : 137 - 146