Linear shrinkage estimation of the variance of a distribution with unknown mean

被引:0
|
作者
Ikeda, Yuki [1 ]
Nakada, Ryumei [1 ]
Kubokawa, Tatsuya [2 ]
Srivastava, Muni S. [3 ]
机构
[1] Univ Tokyo, Grad Sch Econ, Tokyo, Japan
[2] Univ Tokyo, Fac Econ, Tokyo, Japan
[3] Univ Toronto, Dept Stat, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会; 日本学术振兴会;
关键词
Kurtosis; linear regression model; linear shrinkage estimation; quadratic loss function; risk function; variance; INADMISSIBILITY;
D O I
10.1080/03610926.2019.1657457
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In estimation of the variance of a distribution with unknown mean, the paper suggests the linear shrinkage estimators motivated from a Bayesian perspective. The so-called Stein's truncated estimator of the variance can be derived as the linear shrinkage estimator when the distribution is normal. The method of the linear shrinkage estimation is extended to non normal distributions and to linear regression models. The linear shrinkage estimator with the optimal weight estimate, derived without assuming normality, is shown to have a good numerical performance for several distributions.
引用
收藏
页码:2039 / 2047
页数:9
相关论文
共 50 条