OPTIMAL SHRINKAGE ESTIMATION OF MEAN PARAMETERS IN FAMILY OF DISTRIBUTIONS WITH QUADRATIC VARIANCE

被引:18
|
作者
Xie, Xianchao [1 ]
Kou, S. C. [2 ]
Brown, Lawrence [3 ]
机构
[1] Two Sigma Investments LLC, 100 Ave Amer,Floor 16, New York, NY 10013 USA
[2] Harvard Univ, Dept Stat, Cambridge, MA 02138 USA
[3] Univ Penn, Wharton Sch, Philadelphia, PA 19104 USA
来源
ANNALS OF STATISTICS | 2016年 / 44卷 / 02期
基金
美国国家科学基金会;
关键词
Hierarchical model; shrinkage estimator; unbiased estimate of risk; asymptotic optimality; quadratic variance function; NEF-QVF; location-scale family; EMPIRICAL BAYES ESTIMATION; POISSON; ADMISSIBILITY; PREDICTION; VECTOR;
D O I
10.1214/15-AOS1377
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper discusses the simultaneous inference of mean parameters in a family of distributions with quadratic variance function. We first introduce a class of semiparametric/parametric shrinkage estimators and establish their asymptotic optimality properties. Two specific cases, the location-scale family and the natural exponential family with quadratic variance function, are then studied in detail. We conduct a comprehensive simulation study to compare the performance of the proposed methods with existing shrinkage estimators. We also apply the method to real data and obtain encouraging results.
引用
收藏
页码:564 / 597
页数:34
相关论文
共 50 条
  • [1] SHRINKAGE ESTIMATION OF MEAN-VARIANCE PORTFOLIO
    Liu, Yan
    Chan, Ngai Hang
    Ng, Chi Tim
    Wong, Samuel Po Shing
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2016, 19 (01)
  • [2] Linear shrinkage estimation of the variance of a distribution with unknown mean
    Ikeda, Yuki
    Nakada, Ryumei
    Kubokawa, Tatsuya
    Srivastava, Muni S.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (09) : 2039 - 2047
  • [3] Optimal quadratic-form estimator of the variance of the sample mean
    Song, WMT
    Shih, NH
    Yuan, MJ
    [J]. PROCEEDINGS OF THE 1997 WINTER SIMULATION CONFERENCE, 1997, : 246 - 252
  • [4] On the shrinkage estimation of variance
    Biau, Gerard
    Yatracos, Yannis G.
    [J]. JOURNAL OF THE SFDS, 2012, 153 (01): : 5 - 21
  • [5] Optimal variance estimation without estimating the mean function
    Tong, Tiejun
    Ma, Yanyuan
    Wang, Yuedong
    [J]. BERNOULLI, 2013, 19 (5A) : 1839 - 1854
  • [6] Optimal training of Mean Variance Estimation neural networks
    Sluijterman, Laurens
    Cator, Eric
    Heskes, Tom
    [J]. NEUROCOMPUTING, 2024, 597
  • [7] Introducing a Family of Distributions by Using the Class of Normal Mean–Variance Mixture
    Maryam Darijani
    Hojatollah Zakerzadeh
    Ali Akbar Jafari
    [J]. Journal of Statistical Theory and Practice, 2024, 18
  • [8] On estimation of parameters of the exponential power family of distributions
    Rahman, M
    Gokhale, DV
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1996, 25 (02) : 291 - 299
  • [9] Optimal High-Dimensional Shrinkage Covariance Estimation for Elliptical Distributions
    Ollila, Esa
    [J]. 2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 1639 - 1643
  • [10] QUADRATIC ESTIMATION OF VARIANCE COMPONENTS
    LAMOTTE, LR
    [J]. BIOMETRICS, 1973, 29 (02) : 311 - 330