INTEGRABLE MODULES FOR AFFINE LIE SUPERALGEBRAS

被引:0
|
作者
Rao, Senapathi Eswara [1 ]
Futorny, Vyacheslav [2 ]
机构
[1] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India
[2] Univ Sao Paulo, Inst Math, BR-05315970 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
DIMENSIONAL WEIGHT SPACES; CLASSIFICATION; ALGEBRAS; REPRESENTATIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Irreducible nonzero level modules with finite-dimensional weight spaces are discussed for nontwisted affine Lie superalgebras. A complete classification of such modules is obtained for superalgebras of type A(m, n)(boolean AND) and C(n)(boolean AND) using Mathieu's classification of cuspidal modules over simple Lie algebras. In other cases the classification problem is reduced to the classification of cuspidal modules over finite-dimensional cuspidal Lie superalgebras described by Dimitrov, Mathieu and Penkov. Based on these results a. complete classification of irreducible integrable (in the sense of Kac and Wakimoto) modules is obtained by showing that any such module is of highest weight, in which case the problem was solved by Kac and Wakimoto.
引用
收藏
页码:5435 / 5455
页数:21
相关论文
共 50 条
  • [41] Representations of affine Lie superalgebras and their quantization in type A
    Bezerra, Luan
    Calixto, Lucas
    Futorny, Vyacheslav
    Kashuba, Iryna
    JOURNAL OF ALGEBRA, 2022, 611 : 320 - 340
  • [42] THE CLASSIFICATION OF ALMOST AFFINE (HYPERBOLIC) LIE SUPERALGEBRAS
    Chapovalov, Danil
    Chapovalov, Maxim
    Lebedev, Alexei
    Leites, Dimitry
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2010, 17 : 103 - 161
  • [43] REALIZATION OF A CLASS OF AFFINE LIE-SUPERALGEBRAS
    SU, YC
    JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (08) : 2653 - 2655
  • [44] On the semisimplicity of the category KLk for affine Lie superalgebras
    Adamovic, Drazen
    Frajria, Pierluigi Moseneder
    Papi, Paolo
    ADVANCES IN MATHEMATICS, 2022, 405
  • [45] Classification of Irreducible Integrable Modules for Extended Affine Lie Algebras with Center Acting Trivially
    Tantubay, Santanu
    Batra, Punita
    JOURNAL OF LIE THEORY, 2023, 33 (03) : 747 - 762
  • [46] Weyl Modules and Weyl Functors for Lie Superalgebras
    Irfan Bagci
    Lucas Calixto
    Tiago Macedo
    Algebras and Representation Theory, 2019, 22 : 723 - 756
  • [47] WHITTAKER CATEGORIES AND WHITTAKER MODULES FOR LIE SUPERALGEBRAS
    Bagci, Irfan
    Christodoulopoulou, Konstantina
    Wiesner, Emilie
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (11) : 4932 - 4947
  • [48] ODD BASES OF LIE-SUPERALGEBRAS AND INTEGRABLE EQUATIONS
    ANDREEV, VA
    THEORETICAL AND MATHEMATICAL PHYSICS, 1987, 72 (01) : 758 - 764
  • [49] Dynkin diagrams and integrable models based on Lie superalgebras
    Evans, JM
    Madsen, JO
    NUCLEAR PHYSICS B, 1997, 503 (03) : 715 - 746
  • [50] Weyl Modules and Weyl Functors for Lie Superalgebras
    Bagci, Irfan
    Calixto, Lucas
    Macedo, Tiago
    ALGEBRAS AND REPRESENTATION THEORY, 2019, 22 (03) : 723 - 756