Formation of a Spinel Coating on AZ31 Magnesium Alloy by Plasma Electrolytic Oxidation

被引:12
|
作者
Sieber, Maximilian [1 ]
Simchen, Frank [1 ]
Scharf, Ingolf [1 ]
Lampke, Thomas [1 ]
机构
[1] Tech Univ Chemnitz, Mat & Surface Engn Grp, D-09107 Chemnitz, Germany
关键词
corrosion; inorganic coatings; magnesium; plasma electrolytic oxidation; CORROSION-RESISTANCE; MICROARC OXIDATION; SILICATE; BEHAVIOR; NAALO2; WEAR;
D O I
10.1007/s11665-016-1917-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Plasma electrolytic oxidation (PEO) is a common means for the surface modification of light metals. However, PEO of magnesium substrates in dilute electrolytes generally leads to the formation of coatings consisting of unfavorable MgO magnesium oxide. By incorporation of electrolyte components, the phase constitution of the oxide coatings can be modified. Coatings consisting exclusively of MgAl2O4 magnesium-aluminum spinel are produced by PEO in an electrolyte containing hydroxide, aluminate, and phosphate anions. The hardness of the coatings is 3.5 GPa on Martens scale on average. Compared to the bare substrate, the coatings reduce the corrosion current density in dilute sodium chloride solution by approx. one order of magnitude and slightly shift the corrosion potential toward more noble values.
引用
收藏
页码:1157 / 1162
页数:6
相关论文
共 50 条
  • [21] In situ synthesis and electrochemical corrosion behavior of plasma electrolytic oxidation coating containing an osteoporosis drug on AZ31 magnesium alloy
    Rahmati, M.
    Zahrani, E. Mohammadi
    Atapour, M.
    Nezhad, A. H. Noorbakhsh
    Hakimizad, A.
    Alfantazi, A. M.
    MATERIALS CHEMISTRY AND PHYSICS, 2024, 315
  • [22] Plasma electrolytic oxidation of AZ31 and AZ91 magnesium alloys:Comparison of coatings formation mechanism
    A.G.Rakoch
    E.P.Monakhova
    Z.V.Khabibullina
    M.Serdechnova
    C.Blawert
    M.L.Zheludkevich
    A.A.Gladkova
    Journal of Magnesium and Alloys, 2020, 8 (03) : 587 - 600
  • [23] Plasma electrolytic oxidation of AZ31 and AZ91 magnesium alloys: Comparison of coatings formation mechanism
    Rakoch, A. G.
    Monakhova, E. P.
    Khabibullina, Z., V
    Serdechnova, M.
    Blawert, C.
    Zheludkevich, M. L.
    Gladkova, A. A.
    JOURNAL OF MAGNESIUM AND ALLOYS, 2020, 8 (03) : 587 - 600
  • [24] Enhanced corrosion protection of AZ31 magnesium alloy by duplex plasma electrolytic oxidation and polymer coatings
    Srinivasan, P. B.
    Scharnagl, N.
    Blawert, C.
    Dietzel, W.
    SURFACE ENGINEERING, 2010, 26 (05) : 354 - 360
  • [25] Preparation and Characterization of Fluoride-Incorporated Plasma Electrolytic Oxidation Coatings on the AZ31 Magnesium Alloy
    Fu, Lingxia
    Yang, Yanxia
    Zhang, Longlong
    Wu, Yuanzhi
    Liang, Jun
    Cao, Baocheng
    COATINGS, 2019, 9 (12)
  • [26] Growth and Corrosion Characteristics of Plasma Electrolytic Oxidation Ceramic Films Formed on AZ31 Magnesium Alloy
    王丽
    陈砺
    严宗诚
    王红林
    彭家志
    过程工程学报, 2009, 9 (03) : 592 - 597
  • [27] Corrosion resistance and microstructure characteristics of plasma electrolytic oxidation coatings formed on AZ31 magnesium alloy
    Wang, H. M.
    Chen, Z. H.
    Li, L. L.
    SURFACE ENGINEERING, 2010, 26 (05) : 385 - 391
  • [28] Formation of phosphate/permanganate conversion coating on AZ31 magnesium alloy
    Lin, CS
    Lee, CY
    Li, WC
    Chen, YS
    Fang, GN
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (03) : B90 - B96
  • [29] Plasma electrolytic oxidation of AZ31 magnesium stents for degradation rate control
    Munoz, Marta
    Fernandez, Juan Pablo
    Torres, Belen
    Pulido, Nuria
    Zhang, Guangqi
    Shanov, Vesselin
    Moreno, Lara
    Matykina, Endzhe
    Rams, Joaquin
    SURFACE & COATINGS TECHNOLOGY, 2024, 479
  • [30] Improving the wear properties of AZ31 magnesium alloy under vacuum low-temperature condition by plasma electrolytic oxidation coating
    Li, Hang
    Lu, Songtao
    Qin, Wei
    Han, Lu
    Wu, Xiaohong
    ACTA ASTRONAUTICA, 2015, 116 : 126 - 131