Scale-invariant nonlinear optics in gases

被引:108
|
作者
Heyl, C. M. [1 ]
Coudert-Alteirac, H. [1 ]
Miranda, M. [1 ]
Louisy, M. [1 ]
Kovacs, K. [2 ,3 ]
Tosa, V. [2 ,3 ]
Balogh, E. [3 ,4 ]
Varju, K. [3 ,4 ]
L'Huillier, A. [1 ]
Couairon, A. [5 ]
Arnold, C. L. [1 ]
机构
[1] Lund Univ, Dept Phys, POB 118, SE-22100 Lund, Sweden
[2] Natl Inst R&D Isotop & Mol Technol, Cluj Napoca, Romania
[3] ELI Hu Nkft, ELI ALPS, Dugon Ter 13, H-6720 Szeged, Hungary
[4] Univ Szeged, Dept Opt & Quantum Elect, Dom Ter 9, H-6720 Szeged, Hungary
[5] Ecole Polytech, CNRS, Ctr Phys Theor, F-91128 Palaiseau, France
来源
OPTICA | 2016年 / 3卷 / 01期
基金
欧洲研究理事会; 瑞典研究理事会; 匈牙利科学研究基金会;
关键词
HIGH-HARMONIC-GENERATION; LASER-PULSES; SELF-COMPRESSION; FILAMENTATION; LIGHT; CYCLE; IONIZATION; INTENSE; DRIVEN; MEDIA;
D O I
10.1364/OPTICA.3.000075
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Nonlinear optical methods have become ubiquitous in many scientific areas, from fundamental studies of timeresolved electron dynamics to microscopy and spectroscopy applications. They are, however, often limited to a certain range of parameters such as pulse energy and average power. Restrictions arise from, for example, the required field intensity as well as from parasitic nonlinear effects and saturation mechanisms. Here, we identify a fundamental principle of nonlinear light -matter interaction in gases and show that paraxial nonlinear wave equations are scaleinvariant if spatial dimensions, gas density, and laser pulse energy are scaled appropriately. As an example, we apply this principle to high-order harmonic generation and provide a general method for increasing peak and average power of attosecond sources. In addition, we experimentally demonstrate the implications for the compression of short laser pulses. Our scaling principle extends well beyond those examples and includes many nonlinear processes with applications in different areas of science. (C) 2016 Optical Society of America
引用
收藏
页码:75 / 81
页数:7
相关论文
共 50 条
  • [1] Scale-Invariant Nonlinear Optical Effects in Gases
    Heyl, C. M.
    Coudert-Aalteirac, H.
    Miranda, M.
    Louisy, M.
    Kovacs, K.
    Tosa, V.
    Balogh, E.
    Varju, K.
    L'Huillier, A.
    Couairon, A.
    Arnold, C. L.
    [J]. 2016 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2016,
  • [2] Scale-invariant nonlinear digital filters
    Pearson, RK
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (08) : 1986 - 1993
  • [3] NONLINEAR CONSTRAINT IN SCALE-INVARIANT THEORIES
    GRADWOHL, BA
    KALBERMANN, G
    [J]. PHYSICAL REVIEW D, 1990, 41 (04): : 1327 - 1328
  • [4] Observation of the Efimovian expansion in scale-invariant Fermi gases
    Deng, Shujin
    Shi, Zhe-Yu
    Diao, Pengpeng
    Yu, Qianli
    Zhai, Hui
    Qi, Ran
    Wu, Haibin
    [J]. SCIENCE, 2016, 353 (6297) : 371 - 374
  • [5] Thermodynamics of a scale-invariant nonlinear sigma model
    Ferrari, Gabriel
    [J]. ASTRONOMISCHE NACHRICHTEN, 2023, 344 (1-2)
  • [6] STABILITY OF SCALE-INVARIANT NONLINEAR GRAVITATIONAL CLUSTERING
    RUAMSUWAN, L
    FRY, JN
    [J]. ASTROPHYSICAL JOURNAL, 1992, 396 (02): : 416 - 429
  • [7] Scale-Invariant Systems Realize Nonlinear Differential Operators
    Lang, Moritz
    Sontag, Eduardo
    [J]. 2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 6676 - 6682
  • [8] Scrub data with scale-invariant nonlinear digital filters
    Pearson, R
    [J]. EDN, 2002, 47 (02) : 71 - +
  • [9] Scale-invariant inflation
    Rinaldi, M.
    Cecchini, C.
    Ghoshal, A.
    Mukherjee, D.
    [J]. AVENUES OF QUANTUM FIELD THEORY IN CURVED SPACETIME, AQFTCS 2022, 2023, 2531
  • [10] Scale-invariant groups
    Nekrashevych, Volodymyr
    Pete, Gabor
    [J]. GROUPS GEOMETRY AND DYNAMICS, 2011, 5 (01) : 139 - 167