Observation of the Efimovian expansion in scale-invariant Fermi gases

被引:78
|
作者
Deng, Shujin [1 ]
Shi, Zhe-Yu [2 ]
Diao, Pengpeng [1 ]
Yu, Qianli [1 ]
Zhai, Hui [2 ]
Qi, Ran [3 ]
Wu, Haibin [1 ,4 ]
机构
[1] East China Normal Univ, State Key Lab Precis Spect, Shanghai 200062, Peoples R China
[2] Tsinghua Univ, Inst Adv Study, Beijing 100084, Peoples R China
[3] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China
[4] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Peoples R China
基金
中国国家自然科学基金;
关键词
BOSE-EINSTEIN CONDENSATION; ULTRACOLD ATOMS; SUPERFLUID; THERMODYNAMICS; UNIVERSALITY; TRANSITION; SCATTERING; DYNAMICS; SYSTEM; STATES;
D O I
10.1126/science.aaf0666
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Scale invariance plays an important role in unitary Fermi gases. Discrete scaling symmetry manifests itself in quantum few-body systems such as the Efimov effect. Here, we report on the theoretical prediction and experimental observation of a distinct type of expansion dynamics for scale-invariant quantum gases. When the frequency of the harmonic trap holding the gas decreases continuously as the inverse of time t, the expansion of the cloud size exhibits a sequence of plateaus. The locations of these plateaus obey a discrete geometric scaling law with a controllable scale factor, and the expansion dynamics is governed by a log-periodic function. This marked expansion shares the same scaling law and mathematical description as the Efimov effect.
引用
收藏
页码:371 / 374
页数:4
相关论文
共 50 条
  • [2] Observation of Dynamical Super-Efimovian Expansion in a Unitary Fermi Gas
    Deng, Shujin
    Diao, Pengpeng
    Li, Fang
    Yu, Qianli
    Yu, Shi
    Wu, Haibin
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (12)
  • [3] Scale-invariant nonlinear optics in gases
    Heyl, C. M.
    Coudert-Alteirac, H.
    Miranda, M.
    Louisy, M.
    Kovacs, K.
    Tosa, V.
    Balogh, E.
    Varju, K.
    L'Huillier, A.
    Couairon, A.
    Arnold, C. L.
    [J]. OPTICA, 2016, 3 (01): : 75 - 81
  • [4] Scale-Invariant Nonlinear Optical Effects in Gases
    Heyl, C. M.
    Coudert-Aalteirac, H.
    Miranda, M.
    Louisy, M.
    Kovacs, K.
    Tosa, V.
    Balogh, E.
    Varju, K.
    L'Huillier, A.
    Couairon, A.
    Arnold, C. L.
    [J]. 2016 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2016,
  • [5] Fermi-bounce cosmology and scale-invariant power spectrum
    Alexander, Stephon
    Bambi, Cosimo
    Marciano, Antonino
    Modesto, Leonardo
    [J]. PHYSICAL REVIEW D, 2014, 90 (12):
  • [6] Scale-invariant Fermi gas in a time-dependent harmonic potential
    Moroz, Sergej
    [J]. PHYSICAL REVIEW A, 2012, 86 (01):
  • [7] Scale-invariant inflation
    Rinaldi, M.
    Cecchini, C.
    Ghoshal, A.
    Mukherjee, D.
    [J]. AVENUES OF QUANTUM FIELD THEORY IN CURVED SPACETIME, AQFTCS 2022, 2023, 2531
  • [8] Scale-invariant groups
    Nekrashevych, Volodymyr
    Pete, Gabor
    [J]. GROUPS GEOMETRY AND DYNAMICS, 2011, 5 (01) : 139 - 167
  • [9] ON SCALE-INVARIANT DISTRIBUTIONS
    WHITTAKER, JV
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1983, 43 (02) : 257 - 267
  • [10] A generalization of the cumulant expansion. Application to a scale-invariant probabilistic model
    Rodriguez, A.
    Tsallis, C.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (07)