Reply to 'Comment on "Equilibrium crystal shape of the Potts model at the first-order transition point"'

被引:2
|
作者
Fujimoto, M [1 ]
机构
[1] Nara Med Univ, Dept Phys, Kashihara, Nara 6348521, Japan
来源
关键词
D O I
10.1088/0305-4470/35/34/402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The eight-vertex model is defined on the square lattice rotated through an arbitrary angle with respect to the coordinate axes. We re-examine the analysis of the anisotropic correlation length in a previous paper (Fujimoto M 1996 Physica A 233 485-502). We point out that the asymptotic form of the correlation function is expressed by the use of differential forms on a Riemann surface of genus 1. Combined with the symmetry of the square lattice, this fact explains that the anisotropic correlation length is represented in terms of simple algebraic curves. The argument is applicable to a wide class of lattice models (including unsolvable ones).
引用
收藏
页码:7553 / 7557
页数:5
相关论文
共 50 条
  • [21] Equilibrium crystal shapes in the Potts model
    Bikker, RP
    Barkema, GT
    van Beijeren, H
    PHYSICAL REVIEW E, 2001, 64 (01): : 5
  • [22] Critical Point in the Curve of First-Order Magnetic Phase Transition
    E. Z. Valiev
    Journal of Experimental and Theoretical Physics, 2023, 136 : 300 - 304
  • [23] Nonequilibrium critical relaxation at a first-order phase transition point
    Pleimling, M.
    Igloi, F.
    EPL, 2007, 79 (05)
  • [24] Critical Point in the Curve of First-Order Magnetic Phase Transition
    Valiev, E. Z.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2023, 136 (03) : 300 - 304
  • [25] FINITE-SIZE-SCALING FOR FIRST-ORDER TRANSITIONS - POTTS-MODEL
    DEOLIVEIRA, PMC
    DEOLIVEIRA, SMM
    CORDEIRO, CE
    STAUFFER, D
    JOURNAL OF STATISTICAL PHYSICS, 1995, 80 (5-6) : 1433 - 1442
  • [26] First-order liquid crystal orientation transition on inhomogeneous substrates
    Tsui, OKC
    Lee, FK
    Zhang, B
    Sheng, P
    PHYSICAL REVIEW E, 2004, 69 (02): : 021704 - 1
  • [27] A MODIFIED SPHERICAL MODEL OF A FIRST-ORDER PHASE TRANSITION
    LANGER, JS
    PHYSICAL REVIEW, 1965, 137 (5A): : 1531 - &
  • [28] MODEL FOR FIRST-ORDER PHASE-TRANSITION IN MNBI
    STREIFER, W
    HUBERMAN, BA
    APPLIED PHYSICS LETTERS, 1974, 24 (03) : 147 - 148
  • [29] First-order transition in the Ginzburg-Landau model
    Curty, P
    Beck, H
    PHYSICAL REVIEW LETTERS, 2000, 85 (04) : 796 - 799
  • [30] Influence of dilution on the strong first-order phase transition of the 3D 4-state Potts model
    Chatelain, C
    Berche, PE
    Berche, B
    Janke, W
    COMPUTER PHYSICS COMMUNICATIONS, 2002, 147 (1-2) : 431 - 434