Coupled oscillators for modeling and analysis of EEG/MEG oscillations

被引:13
|
作者
Leistritz, Lutz
Putsche, Peter
Schwab, Karin
Hesse, Wolfram
Suesse, Thomas
Haueisen, Jens
Witte, Herbert
机构
[1] Univ Jena, Fac Med, Inst Med Stat Comp Sci & Documentat, D-07740 Jena, Germany
[2] Univ Jena, Fac Med, Dept Neurol, Biomagnet Ctr, D-07740 Jena, Germany
[3] Tech Univ Ilmenau, Inst Biomed Engn & Informat, D-98684 Ilmenau, Germany
来源
BIOMEDIZINISCHE TECHNIK | 2007年 / 52卷 / 01期
关键词
coupled oscillators; EEG; MEG; model-based signal analysis; parameter identification;
D O I
10.1515/BMT.2007.016
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This study presents three EEG/MEG applications in which the modeling of oscillatory signal components offers complementary analysis and an improved explanation of the underlying generator structures. Coupled oscillator networks were used for modeling. Parameters of the corresponding ordinary coupled differential equation (ODE) system are identified using EEG/MEG data and the resulting solution yields the modeled signals. This model-related analysis strategy provides information about the coupling quantity and quality between signal components (example 1, neonatal EEG during quiet sleep), allows identification of the possible contribution of hidden generator structures (example 2, 600-Hz MEG oscillations in somatosensory evoked magnetic fields), and can explain complex signal characteristics such as amplitude-frequency coupling and frequency entrainment (example 3, EEG burst patterns in sedated patients).
引用
收藏
页码:83 / 89
页数:7
相关论文
共 50 条
  • [31] Oscillations and Synchronization in a System of Three Reactively Coupled Oscillators
    Kuznetsov, Alexander P.
    Turukina, Ludmila V.
    Chernyshov, Nikolai Yu
    Sedova, Yuliya V.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (01):
  • [32] STOCHASTIC OSCILLATIONS IN A SYSTEM OF COUPLED OSCILLATORS WITH A LAG.
    Kal'yanov, E.V.
    Lebedev, M.N.
    Soviet journal of communications technology & electronics, 1985, 30 (12): : 89 - 94
  • [33] FORCED-OSCILLATIONS IN 2 COUPLED PASSIVE OSCILLATORS
    VAVRIV, DM
    TSARIN, YA
    CHERNESHOV, IY
    RADIOTEKHNIKA I ELEKTRONIKA, 1991, 36 (10): : 2015 - 2023
  • [34] Behavioral modeling of (coupled) harmonic oscillators
    Vanassche, P
    Gielen, G
    Sansen, W
    39TH DESIGN AUTOMATION CONFERENCE, PROCEEDINGS 2002, 2002, : 536 - 541
  • [35] Behavioral modeling of (coupled) harmonic oscillators
    Vanassche, P
    Gielen, GGE
    Sansen, W
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2003, 22 (08) : 1017 - 1026
  • [36] Analysis of coupled quantum parametric harmonic oscillators by classical nonlinear modeling
    Matsuura, Keita
    Nakamura, Ibuki
    Fujisaka, Hisato
    IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2022, 13 (03): : 570 - 581
  • [37] Analysis and modeling of the locomotor central pattern generator as a network of coupled oscillators
    Sigvardt, KA
    Miller, WL
    NEURONAL MECHANISMS FOR GENERATING LOCOMOTOR ACTIVITY, 1998, 860 : 250 - 265
  • [38] MARKOV CHAIN MODELING AND ANALYSIS OF COMPLICATED PHENOMENA IN COUPLED CHAOTIC OSCILLATORS
    Nishio, Yoshifumi
    Komatsu, Yuta
    Uwate, Yoko
    Hasler, Martin
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2010, 19 (04) : 801 - 818
  • [39] Bayesian analysis of phase data in EEG and MEG
    Dimmock, Sydney
    O'Donnell, Cian
    Houghton, Conor
    ELIFE, 2023, 12
  • [40] Conservative Finite Element Modeling of EEG and MEG on Unstructured Grids
    Yavich, N.
    Koshev, N.
    Malovichko, M.
    Razorenova, A.
    Fedorov, M.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (03) : 647 - 656