MULTIPLICATIVE PARAMETERS IN GRADIENT DESCENT METHODS

被引:2
|
作者
Stanimirovic, Predrag [1 ]
Miladinovic, Marko [1 ]
Djordjevic, Snezana [1 ]
机构
[1] Univ Nis, Dept Math, Fac Sci & Math, Nish 18000, Serbia
关键词
Line search; gradient descent methods; Newton method; backtracking line search; convergence rate; BARZILAI;
D O I
10.2298/FIL0903023S
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduced an algorithm for unconstrained optimization based on the reduction of the modified Newton method with line search into a gradient descent method. Main idea used in the algorithm construction is approximation of Hessian by a diagonal matrix. The step length calculation algorithm is based on the Taylor's development in two successive iterative points and the backtracking line search procedure.
引用
收藏
页码:23 / 36
页数:14
相关论文
共 50 条
  • [11] A Class of Descent Nonlinear Conjugate Gradient Methods
    Ying, Tao
    2013 FOURTH INTERNATIONAL CONFERENCE ON DIGITAL MANUFACTURING AND AUTOMATION (ICDMA), 2013, : 14 - 16
  • [12] STATISTICAL INFERENCE FOR MODEL PARAMETERS IN STOCHASTIC GRADIENT DESCENT
    Chen, Xi
    Lee, Jason D.
    Tong, Xin T.
    Zhang, Yichen
    ANNALS OF STATISTICS, 2020, 48 (01): : 251 - 273
  • [13] Optimization of Gradient Descent Parameters in Attitude Estimation Algorithms
    Sever, Karla
    Golusin, Leonardo Max
    Loncar, Josip
    SENSORS, 2023, 23 (04)
  • [14] Learning to learn by gradient descent by gradient descent
    Andrychowicz, Marcin
    Denil, Misha
    Colmenarejo, Sergio Gomez
    Hoffman, Matthew W.
    Pfau, David
    Schaul, Tom
    Shillingford, Brendan
    de Freitas, Nando
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [15] Nonsymmetric preconditioning for conjugate gradient and steepest descent methods
    Bouwmeester, Henricus
    Dougherty, Andrew
    Knyazev, Andrew V.
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2015 COMPUTATIONAL SCIENCE AT THE GATES OF NATURE, 2015, 51 : 276 - 285
  • [16] Analysis of Weight Initialization Methods for Gradient Descent with momentum
    Masood, Sarfaraz
    Doja, M. N.
    Chandra, Pravin
    2015 INTERNATIONAL CONFERENCE ON SOFT COMPUTING TECHNIQUES AND IMPLEMENTATIONS (ICSCTI), 2015,
  • [17] Privacy-Preserving Gradient-Descent Methods
    Han, Shuguo
    Ng, Wee Keong
    Wan, Li
    Lee, Vincent C. S.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2010, 22 (06) : 884 - 899
  • [18] Iterative Gradient Descent Methods for Solving Linear Equations
    A. B. Samokhin
    A. S. Samokhina
    A. Ya. Sklyar
    Yu. V. Shestopalov
    Computational Mathematics and Mathematical Physics, 2019, 59 : 1267 - 1274
  • [19] Analysis of Gradient Descent Methods With Nondiminishing Bounded Errors
    Ramaswamy, Arunselvan
    Bhatnagar, Shalabh
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (05) : 1465 - 1471
  • [20] Two descent hybrid conjugate gradient methods for optimization
    Zhang, Li
    Zhou, Weijun
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 216 (01) : 251 - 264