Soliton solutions for quasilinear Schrodinger equations, II

被引:528
|
作者
Liu, JQ
Wang, YQ
Wang, ZQ [1 ]
机构
[1] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
[2] Peking Univ, Dept Math, Beijing 100871, Peoples R China
关键词
standing waves; quasilinear Schrodinger equations; orlicz spaces; minimax methods;
D O I
10.1016/S0022-0396(02)00064-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a class of quasilinear Schrodinger equations, we establish the existence of ground states of soliton-type solutions by a variational method. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:473 / 493
页数:21
相关论文
共 50 条
  • [21] Positive Solutions for Singular Quasilinear Schrodinger Equations with One Parameter, II
    Moameni, Abbas
    Offin, Daniel C.
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2010, 23 (03): : 222 - 234
  • [22] Soliton solutions for fractional Schrodinger equations
    Li, Quanqing
    Wu, Xian
    APPLIED MATHEMATICS LETTERS, 2016, 53 : 119 - 124
  • [23] Multiple solutions for quasilinear Schrodinger equations with a parameter
    Wu, Xian
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (07) : 2619 - 2632
  • [24] Bounded solutions for quasilinear modified Schrodinger equations
    Candela, Anna Maria
    Salvatore, Addolorata
    Sportelli, Caterina
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (06)
  • [25] Nonexistence of solutions to quasilinear Schrodinger equations with a parameter
    Yu, Hongwang
    Wei, Yunfeng
    Chen, Caisheng
    Chen, Qiang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (02) : 2584 - 2599
  • [26] Multiple solutions for generalized quasilinear Schrodinger equations
    Li, Quanqing
    Wu, Xian
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (05) : 1359 - 1366
  • [27] Nonexistence of solutions for quasilinear Schrodinger equations in RN
    Xiu, Zonghu
    Chen, Caisheng
    Wei, Yunfeng
    APPLIED MATHEMATICS LETTERS, 2020, 105
  • [28] Multiplicity of nonnegative solutions for quasilinear Schrodinger equations
    Miyagaki, Olimpio H.
    Moreira, Sandra Im.
    Pucci, Patrizia
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 434 (01) : 939 - 955
  • [29] Multiple solutions for a class of quasilinear Schrodinger equations
    Li, Quanqing
    Wang, Wenbo
    Teng, Kaimin
    Wu, Xian
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (07) : 1530 - 1550
  • [30] Localized nodal solutions for quasilinear Schrodinger equations
    Liu, Xiangqing
    Liu, Jiaquan
    Wang, Zhi-Qiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (12) : 7411 - 7461