A Finite Element Formulation for Kirchhoff Plates in Strain-gradient Elasticity

被引:2
|
作者
Beheshti, Alireza [1 ]
机构
[1] Univ Guilan, Dept Mech Engn, Rasht, Iran
来源
关键词
Strain-gradient Elasticity; Finite Element Method; Kirchhoff plate;
D O I
10.13052/ejcm1958-5829.2831
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The current contribution is centered on bending of rectangular plates using the finite element method in the strain-gradient elasticity. To this aim, following introducing stresses and strains for a plate based on the Kirchhoff hypothesis, the principle of the virtual work is adopted to derive the weak form. Building upon Hermite polynomials and by deeming convergence requirements, four rectangular elements for the static analysis of strain-gradient plates are presented. To explore the performance of the proposed elements, particularly in small scales, some problems are solved and the results are compared with analytical solutions.
引用
收藏
页码:123 / 146
页数:24
相关论文
共 50 条
  • [31] On the gradient strain elasticity theory of plates
    Lazopoulos, KA
    [J]. EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2004, 23 (05) : 843 - 852
  • [32] Virtual element formulation for gradient elasticity
    Wriggers, Peter
    Hudobivnik, Blaz
    [J]. ACTA MECHANICA SINICA, 2023, 39 (04)
  • [33] Matrix representations for 3D strain-gradient elasticity
    Auffray, N.
    Le Quang, H.
    He, Q. C.
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2013, 61 (05) : 1202 - 1223
  • [34] Strain-gradient elasticity and gradient-dependent plasticity with hierarchical refinement of NURBS
    Kolo, Isa
    Chen, Lin
    de Borst, Rene
    [J]. FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2019, 163 : 31 - 43
  • [35] Classification of first strain-gradient elasticity tensors by symmetry planes
    Quang, Hung Le
    He, Qi-Chang
    Auffray, Nicolas
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 477 (2251):
  • [36] Finite Element Analyses of the Modified Strain Gradient Theory Based Kirchhoff Microplates
    Kandaz, Murat
    Dal, Husnu
    [J]. SURFACES, 2021, 4 (02): : 115 - 156
  • [37] Explicit harmonic structure of bidimensional linear strain-gradient elasticity
    Auffray, N.
    Abdoul-Anziz, H.
    Desmorat, B.
    [J]. EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2021, 87
  • [38] A NEW FINITE ELEMENT METHOD FOR KIRCHHOFF PLATES
    da Veiga, Lourenco Beirao
    Niiranen, Jarkko
    Stenberg, Rolf
    [J]. APPLIED AND INDUSTRIAL MATHEMATICS IN ITALY II, 2007, 75 : 125 - +
  • [39] Strain-Gradient Elasticity Theory for the Mechanics of Fiber Composites Subjected to Finite Plane Deformations: Comprehensive Analysis
    Chun Il Kim
    [J]. Multiscale Science and Engineering, 2019, 1 (2) : 150 - 160
  • [40] On the isotropic moduli of 2D strain-gradient elasticity
    Auffray, Nicolas
    [J]. CONTINUUM MECHANICS AND THERMODYNAMICS, 2015, 27 (1-2) : 5 - 19