An algorithm for computing minimal Gergorin sets

被引:1
|
作者
Kostic, Vladimir R. [1 ]
Miedlar, Agnieszka [2 ]
Cvetkovic, Ljiljana [1 ]
机构
[1] Univ Novi Sad, Fac Sci, Dept Math & Informat, Trg D Obradovica 4, Novi Sad 21000, Serbia
[2] Tech Univ Berlin, Inst Math, MA 4-5,Str 17 Juni, D-10625 Berlin, Germany
关键词
minimal Gergorin set; eigenvalue localization; curve tracing; GERSGORIN;
D O I
10.1002/nla.2024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existing algorithms for computing the minimal Gergorin set are designed for small and medium size (irreducible) matrices and based on Perron root computations coupled with bisection method and sampling techniques. Here, we first discuss the drawbacks of the existing methods and present a new approach based on the modified Newton's method to find zeros of the parameter dependent left-most eigenvalue of a Z-matrix and a special curve tracing procedure. The advantages of the new approach are presented on several test examples that arise in practical applications. Copyright (c) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:272 / 290
页数:19
相关论文
共 50 条
  • [21] Computing minimal sets of descriptive conditions for binary data
    Belohlavek, Radim
    Vychodil, Vilem
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2014, 43 (05) : 521 - 534
  • [22] Comparison and improvement of algorithms for computing minimal cut sets
    Christian Jungreuthmayer
    Govind Nair
    Steffen Klamt
    Jürgen Zanghellini
    BMC Bioinformatics, 14
  • [23] Computing minimal hitting sets based on dynamic minimal cardinality parameter matrix
    Wei X.
    Zhao X.
    Huang S.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2023, 29 (05): : 1657 - 1667
  • [24] A similarity computing algorithm for volumetric data sets
    Zhang, T
    Chen, W
    Hu, M
    Peng, QS
    FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, PT 2, PROCEEDINGS, 2005, 3614 : 742 - 751
  • [25] Algorithm for computing differential char sets efficiently
    Cancan, Murat
    Afzal, Farkhanda
    Maqbool, Ayesha
    Afzal, Deeba
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2020, 23 (06): : 1203 - 1216
  • [26] An Algorithm for Computing Bidirectional Minimal Polynomials for Multisequences
    Wang, Li-Ping
    2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4, 2009, : 621 - 624
  • [27] An Implicit Algorithm for Computing the Minimal Gersgorin Set
    Milicevic, S.
    Kostic, V. R.
    Cvetkovic, Lj
    Miedlar, A.
    FILOMAT, 2019, 33 (13) : 4229 - 4238
  • [28] ON GELBAUM ALGORITHM FOR COMPUTING THE MINIMAL POLYNOMIAL OF A MATRIX
    LEACH, RJ
    AMERICAN MATHEMATICAL MONTHLY, 1985, 92 (03): : 208 - 209
  • [29] AN ALGORITHM FOR COMPUTING NONNEGATIVE MINIMAL NORM SOLUTIONS
    NIKOLOPOULOS, PV
    SREEDHARAN, VP
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1994, 15 (1-2) : 87 - 103