An algorithm for computing minimal Gergorin sets

被引:1
|
作者
Kostic, Vladimir R. [1 ]
Miedlar, Agnieszka [2 ]
Cvetkovic, Ljiljana [1 ]
机构
[1] Univ Novi Sad, Fac Sci, Dept Math & Informat, Trg D Obradovica 4, Novi Sad 21000, Serbia
[2] Tech Univ Berlin, Inst Math, MA 4-5,Str 17 Juni, D-10625 Berlin, Germany
关键词
minimal Gergorin set; eigenvalue localization; curve tracing; GERSGORIN;
D O I
10.1002/nla.2024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existing algorithms for computing the minimal Gergorin set are designed for small and medium size (irreducible) matrices and based on Perron root computations coupled with bisection method and sampling techniques. Here, we first discuss the drawbacks of the existing methods and present a new approach based on the modified Newton's method to find zeros of the parameter dependent left-most eigenvalue of a Z-matrix and a special curve tracing procedure. The advantages of the new approach are presented on several test examples that arise in practical applications. Copyright (c) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:272 / 290
页数:19
相关论文
共 50 条
  • [1] Heuristic algorithm of computing minimal hitting sets matrix
    Ouyang, Dan-Tong
    Geng, Xue-Na
    Guo, Jin-Song
    Wang, Xiao-Yu
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2013, 43 (01): : 106 - 110
  • [2] An Incremental Boolean Algorithm for Computing Minimal Hitting Sets
    Huang, Sen
    Zhao, Xiangfu
    Tong, Xiangrong
    2020 13TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2020), 2020, : 56 - 59
  • [4] Algorithm of Computing Minimal Conflict Sets Based on the Structural Feature of Fault Output
    Xu Y.
    Ouyang D.
    Liu M.
    Zhang L.
    Zhang Y.
    Zhang, Yonggang (zhangyg@jlu.edu.cn), 2018, Science Press (55): : 2386 - 2394
  • [5] An algorithm for computing minimal curves
    Guarrera, S
    Logar, A
    Mezzetti, E
    ARCHIV DER MATHEMATIK, 1997, 68 (04) : 285 - 296
  • [6] An algorithm for computing minimal curves
    Silvia Guarrera
    Alessandro Logar
    Emilia Mezzetti
    Archiv der Mathematik, 1997, 68 : 285 - 296
  • [7] The Complexity of Computing Minimal Unidirectional Covering Sets
    Baumeister, Dorothea
    Brandt, Felix
    Fischer, Felix
    Hoffmann, Jan
    Rothe, Joerg
    ALGORITHMS AND COMPLEXITY, PROCEEDINGS, 2010, 6078 : 299 - +
  • [8] Computing minimal doubly resolving sets of graphs
    Kratica, Jozef
    Cangalovic, Mirjana
    Kovacevic-Vujcic, Vera
    COMPUTERS & OPERATIONS RESEARCH, 2009, 36 (07) : 2149 - 2159
  • [9] Efficiently computing minimal sets of critical pairs
    Caboara, M
    Kreuzer, M
    Robbiano, L
    JOURNAL OF SYMBOLIC COMPUTATION, 2004, 38 (04) : 1169 - 1190
  • [10] The Complexity of Computing Minimal Unidirectional Covering Sets
    Dorothea Baumeister
    Felix Brandt
    Felix Fischer
    Jan Hoffmann
    Jörg Rothe
    Theory of Computing Systems, 2013, 53 : 467 - 502