Counting finite lattices

被引:21
|
作者
Heitzig, J [1 ]
Reinhold, J [1 ]
机构
[1] Univ Hannover, Inst Math, D-30167 Hannover, Germany
关键词
orderly algorithm; (un-)labeled lattice; tree; canonical; levelized;
D O I
10.1007/PL00013837
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The correct values for the number of all unlabeled lattices on n elements are known for n less than or equal to 11. We present a fast orderly algorithm generating all unlabeled lattices up to a given size n. Using this algorithm, we have computed the number of all unlabeled lattices as well as that of all labeled lattices on an n-element set for each n less than or equal to 18.
引用
收藏
页码:43 / 53
页数:11
相关论文
共 50 条
  • [41] Finite distributive lattices are congruence lattices of almost-geometric lattices
    Czedli, Gabor
    Schmidt, E. Tamas
    ALGEBRA UNIVERSALIS, 2011, 65 (01) : 91 - 108
  • [42] Finite distributive lattices are congruence lattices of almost-geometric lattices
    Gábor Czédli
    E. Tamás Schmidt
    Algebra universalis, 2011, 65 : 91 - 108
  • [43] FINITE COUNTING AUTOMATA
    SCHUTZENBERGER, MP
    INFORMATION AND CONTROL, 1962, 5 (02): : 91 - &
  • [44] Counting Hamiltonian cycles on planar random lattices
    Higuchi, S
    MODERN PHYSICS LETTERS A, 1998, 13 (09) : 727 - 733
  • [45] Counting and Computing Join-Endomorphisms in Lattices
    Quintero, Santiago
    Ramirez, Sergio
    Rueda, Camilo
    Valencia, Frank
    RELATIONAL AND ALGEBRAIC METHODS IN COMPUTER SCIENCE, 2020, 12062 : 253 - 269
  • [46] FINITE ATOMISTIC LATTICES THAT CAN BE REPRESENTED AS LATTICES OF QUASIVARIETIES
    ADARICHEVA, KV
    DZIOBIAK, W
    GORBUNOV, VA
    FUNDAMENTA MATHEMATICAE, 1993, 142 (01) : 19 - 43
  • [47] COMBINATORIAL PARTITIONS OF FINITE POSETS AND LATTICES - RAMSEY LATTICES
    NESETRIL, J
    RODL, V
    ALGEBRA UNIVERSALIS, 1984, 19 (01) : 106 - 119
  • [48] On finite and totally finite elements in vector lattices
    Weber, M.-R.
    Analysis Mathematica, 1995, 21 (03)
  • [49] SMALL REPRESENTATIONS OF FINITE DISTRIBUTIVE LATTICES AS CONGRUENCE LATTICES
    GRATZER, G
    RIVAL, I
    ZAGUIA, N
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (07) : 1959 - 1961
  • [50] Noncommutative lattices as finite approximations
    Balachandran, AP
    Bimonte, G
    Ercolessi, E
    Landi, G
    Lizzi, F
    Sparano, G
    TeotonioSobrinho, P
    JOURNAL OF GEOMETRY AND PHYSICS, 1996, 18 (02) : 163 - 194