Automatic Dataset Labelling and Feature Selection for Intrusion Detection Systems

被引:17
|
作者
Aparicio-Navarro, Francisco J. [1 ]
Kyriakopoulos, Konstantinos G. [1 ]
Parish, David J. [1 ]
机构
[1] Univ Loughborough, Sch Elect Elect & Syst Engn, Loughborough LE11 3TU, Leics, England
基金
英国工程与自然科学研究理事会;
关键词
Automatic Labelling; Network Traffic Labelling; Unsupervised Anomaly IDS; Feature Selection; Genetic Algorithm;
D O I
10.1109/MILCOM.2014.17
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Correctly labelled datasets are commonly required. Three particular scenarios are highlighted, which showcase this need. When using supervised Intrusion Detection Systems (IDSs), these systems need labelled datasets to be trained. Also, the real nature of the analysed datasets must be known when evaluating the efficiency of the IDSs when detecting intrusions. Another scenario is the use of feature selection that works only if the processed datasets are labelled. In normal conditions, collecting labelled datasets from real networks is impossible. Currently, datasets are mainly labelled by implementing off-line forensic analysis, which is impractical because it does not allow real-time implementation. We have developed a novel approach to automatically generate labelled network traffic datasets using an unsupervised anomaly based IDS. The resulting labelled datasets are subsets of the original unlabelled datasets. The labelled dataset is then processed using a Genetic Algorithm (GA) based approach, which performs the task of feature selection. The GA has been implemented to automatically provide the set of metrics that generate the most appropriate intrusion detection results.
引用
收藏
页码:46 / 51
页数:6
相关论文
共 50 条
  • [21] Vitality Based Feature Selection For Intrusion Detection
    Jupriyadi
    Kistijantoro, Achmad Imam
    2014 International Conference of Advanced Informatics: Concept, Theory and Application (ICAICTA), 2014, : 93 - 96
  • [22] Towards Feature Subset Selection in Intrusion Detection
    Ahmad, Iftikhar
    Amin, Fazal e
    2014 IEEE 7TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC), 2014, : 68 - 73
  • [23] A Feature Selection Approach for Network Intrusion Detection
    Khor, Kok-Chin
    Ting, Choo-Yee
    Amnuaisuk, Somnuk-Phon
    2009 INTERNATIONAL CONFERENCE ON INFORMATION MANAGEMENT AND ENGINEERING, PROCEEDINGS, 2009, : 133 - 137
  • [24] Genetic Feature Selection in Intrusion Detection System
    Han, Myung-Mook
    Kim, Jaehyoun
    Jeong, Taikyeong
    INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2011, 14 (02): : 493 - 502
  • [25] A feature selection based on genetic algorithm for intrusion detection of industrial control systems
    Fang, Yushan
    Yao, Yu
    Lin, Xiaoli
    Wang, Jiaxuan
    Zhai, Hao
    COMPUTERS & SECURITY, 2024, 139
  • [26] A wrapper-based feature selection for improving performance of intrusion detection systems
    Samadi Bonab, Maryam
    Ghaffari, Ali
    Soleimanian Gharehchopogh, Farhad
    Alemi, Payam
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2020, 33 (12)
  • [27] A Feature Selection Based on the Farmland Fertility Algorithm for Improved Intrusion Detection Systems
    Touraj Sattari Naseri
    Farhad Soleimanian Gharehchopogh
    Journal of Network and Systems Management, 2022, 30
  • [28] Evaluating the impact of filter-based feature selection in intrusion detection systems
    Houssam Zouhri
    Ali Idri
    Ahmed Ratnani
    International Journal of Information Security, 2024, 23 : 759 - 785
  • [29] On Efficiency Enhancement of the Correlation-based Feature Selection for Intrusion Detection Systems
    Shahbaz, Mahsa Bataghva
    Wang, Xianbin
    Behnad, Aydin
    Samarabandu, Jagath
    7TH IEEE ANNUAL INFORMATION TECHNOLOGY, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE IEEE IEMCON-2016, 2016,
  • [30] An Approach to Feature Selection in Intrusion Detection Systems Using Machine Learning Algorithms
    Kavitha, G.
    Elango, N. M.
    INTERNATIONAL JOURNAL OF E-COLLABORATION, 2020, 16 (04) : 48 - 58