Combine HowNet lexicon to train phrase recursive autoencoder for sentence-level sentiment analysis

被引:77
|
作者
Fu, Xianghua [1 ]
Liu, Wangwang [1 ]
Xu, Yingying [1 ]
Cui, Laizhong [1 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Sentiment analysis; Recursive autoencoder; HowNet lexicon; Phrase structure tree;
D O I
10.1016/j.neucom.2017.01.079
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Detecting sentiment of sentences in online reviews is still a challenging task. Traditional machine learning methods often use bag-of-words representations which cannot properly capture complex linguistic phenomena in sentiment analysis. Recently, recursive autoencoder (RAE) methods have been proposed for sentence-level sentiment analysis. They use word embedding to represent each word, and learn compositional vector representation of phrases and sentences with recursive autoencoders. Although RAE methods outperform other state-of-the-art sentiment prediction approaches on commonly used datasets, they tend to generate very deep parse trees, and need a large amount of labeled data for each node during the process of learning compositional vector representations. Furthermore, RAE methods mainly combine adjacent words in sequence with a greedy strategy, which make capturing semantic relations between distant words difficult. To solve these issues, we propose a semi-supervised method which combines HowNet lexicon to train phrase recursive autoencoders (we call it CHL-PRAE). CHL-PRAE constructs the phrase recursive autoencoder (PRAE) model at first. Then the model calculates the sentiment orientation of each node with the HowNet lexicon, which acts as sentiment labels, when we train the softmax classifier of PRAE. Furthermore, our CHL-PRAE model conducts bidirectional training to capture global information. Compared with RAE and some supervised methods such as support vector machine (SVM) and naive Bayesian on English and Chinese datasets, the experiment results show that CHL-PRAE can provide the best performance for sentence-level sentiment analysis. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:18 / 27
页数:10
相关论文
共 50 条
  • [2] Sentence-Level Sentiment Analysis in Persian
    Basiri, Mohammad Ehsan
    Kabiri, Arman
    2017 3RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND IMAGE ANALYSIS (IPRIA), 2017, : 84 - 89
  • [3] Sentence-Level Sentiment Analysis in the Presence of Modalities
    Liu, Yang
    Yu, Xiaohui
    Liu, Bing
    Chen, Zhongshuai
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, CICLING 2014, PART II, 2014, 8404 : 1 - 16
  • [4] Sentence-Level Sentiment Analysis via BERT and BiGRU
    Shen, Jianghong
    Liao, Xiaodong
    Tao, Zhuang
    2019 INTERNATIONAL CONFERENCE ON IMAGE AND VIDEO PROCESSING, AND ARTIFICIAL INTELLIGENCE, 2019, 11321
  • [5] Sentence-Level Sentiment Analysis via Sequence Modeling
    Liu, Xiaohua
    Zhou, Ming
    APPLIED INFORMATICS AND COMMUNICATION, PT III, 2011, 226 : 337 - +
  • [6] Sentence-level Sentiment Analysis via Sequence Modeling
    Liu, Xiaohua
    Zhou, Ming
    2010 THE 3RD INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND INDUSTRIAL APPLICATION (PACIIA2010), VOL III, 2010, : 176 - 179
  • [7] A complete framework for aspect-level and sentence-level sentiment analysis
    Chiha, Rim
    Ben Ayed, Mounir
    Pereira, Celia da Costa
    APPLIED INTELLIGENCE, 2022, 52 (15) : 17845 - 17863
  • [8] A complete framework for aspect-level and sentence-level sentiment analysis
    Rim Chiha
    Mounir Ben Ayed
    Célia da Costa Pereira
    Applied Intelligence, 2022, 52 : 17845 - 17863
  • [9] Explainable Sentence-Level Sentiment Analysis for Amazon Product Reviews
    Li, Xuechun
    Sun, Xueyao
    Xu, Zewei
    Zhou, Yifan
    2021 5TH INTERNATIONAL CONFERENCE ON IMAGING, SIGNAL PROCESSING AND COMMUNICATIONS (ICISPC 2021), 2021, : 88 - 94
  • [10] Comparing Recursive Autoencoder and Convolutional Network for Phrase-Level Sentiment Polarity Classification
    Jurgovsky, Johannes
    Granitzer, Michael
    NATURAL LANGUAGE PROCESSING AND INFORMATION SYSTEMS, NLDB 2015, 2015, 9103 : 160 - 166