Transitive Hashing Network for Heterogeneous Multimedia Retrieval

被引:0
|
作者
Cao, Zhangjie [1 ]
Long, Mingsheng [1 ]
Wang, Jianmin [1 ]
Yang, Qiang [2 ]
机构
[1] Tsinghua Univ, Sch Software, TNList, KLiss,MOE, Beijing, Peoples R China
[2] Hong Kong Univ Sci & Technol, Hong Kong, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hashing is widely applied to large-scale multimedia retrieval due to the storage and retrieval efficiency. Cross-modal hashing enables efficient retrieval of one modality from database relevant to a query of another modality. Existing work on cross-modal hashing assumes that heterogeneous relationship across modalities is available for learning to hash. This paper relaxes this strict assumption by only requiring heterogeneous relationship in some auxiliary dataset different from the query or database domain. We design a novel hybrid deep architecture, transitive hashing network (THN), to jointly learn cross-modal correlation from the auxiliary dataset, and align the data distributions of the auxiliary dataset with that of the query or database domain, which generates compact transitive hash codes for efficient cross-modal retrieval. Comprehensive empirical evidence validates that the proposed THN approach yields state of the art retrieval performance on standard multimedia benchmarks, i.e. NUS-WIDE and ImageNet-YahooQA.
引用
收藏
页码:81 / 87
页数:7
相关论文
共 50 条
  • [31] Fast unsupervised consistent and modality-specific hashing for multimedia retrieval
    Yang, Zhan
    Deng, Xiyin
    Long, Jun
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (08): : 6207 - 6223
  • [32] Semantic Boosting Cross-Modal Hashing for efficient multimedia retrieval
    Wang, Ke
    Tang, Jun
    Wang, Nian
    Shao, Ling
    INFORMATION SCIENCES, 2016, 330 : 199 - 210
  • [33] Graph Convolutional Multi-modal Hashing for Flexible Multimedia Retrieval
    Lu, Xu
    Zhu, Lei
    Liu, Li
    Nie, Liqiang
    Zhang, Huaxiang
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 1414 - 1422
  • [34] Fast unsupervised consistent and modality-specific hashing for multimedia retrieval
    Zhan Yang
    Xiyin Deng
    Jun Long
    Neural Computing and Applications, 2023, 35 : 6207 - 6223
  • [35] Scalable Multimedia Retrieval by Deep Learning Hashing with Relative Similarity Learning
    Gao, Lianli
    Song, Jingkuan
    Zou, Fuhao
    Zhang, Dongxiang
    Shao, Jie
    MM'15: PROCEEDINGS OF THE 2015 ACM MULTIMEDIA CONFERENCE, 2015, : 903 - 906
  • [36] Hypergraph Spectral Hashing for image retrieval with heterogeneous social contexts
    Liu, Yang
    Shao, Jian
    Xiao, Jun
    Wu, Fei
    Zhuang, Yueting
    NEUROCOMPUTING, 2013, 119 : 49 - 58
  • [37] The heterogeneous feature selection with structural sparsity for multimedia annotation and hashing: a survey
    Wu, Fei
    Han, Yahong
    Liu, Xiang
    Shao, Jian
    Zhuang, Yueting
    Zhang, Zhongfei
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2012, 1 (01) : 3 - 15
  • [38] Efficient Multi-modal Hashing with Online Query Adaption for Multimedia Retrieval
    Zhu, Lei
    Zheng, Chaoqun
    Lu, Xu
    Cheng, Zhiyong
    Nie, Liqiang
    Zhang, Huaxiang
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2022, 40 (02)
  • [39] Deep Fuzzy Hashing Network for Efficient Image Retrieval
    Lu, Huimin
    Zhang, Ming
    Xu, Xing
    Li, Yujie
    Shen, Heng Tao
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2021, 29 (01) : 166 - 176
  • [40] Deep spatial attention hashing network for image retrieval
    Ge, Lin-Wei
    Zhang, Jun
    Xia, Yi
    Chen, Peng
    Wang, Bing
    Zheng, Chun-Hou
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 63