An Overview of End-to-End Automatic Speech Recognition

被引:114
|
作者
Wang, Dong [1 ,2 ]
Wang, Xiaodong [1 ,2 ]
Lv, Shaohe [1 ,2 ]
机构
[1] Natl Univ Def Technol, Sci & Technol Parallel & Distributed Proc Lab, Changsha 410073, Hunan, Peoples R China
[2] Natl Univ Def Technol, Coll Comp, Changsha 410073, Hunan, Peoples R China
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 08期
关键词
automatic speech recognition; end-to-end; deep learning; neural network; CTC; RNN-transducer; attention; HMM;
D O I
10.3390/sym11081018
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Automatic speech recognition, especially large vocabulary continuous speech recognition, is an important issue in the field of machine learning. For a long time, the hidden Markov model (HMM)-Gaussian mixed model (GMM) has been the mainstream speech recognition framework. But recently, HMM-deep neural network (DNN) model and the end-to-end model using deep learning has achieved performance beyond HMM-GMM. Both using deep learning techniques, these two models have comparable performances. However, the HMM-DNN model itself is limited by various unfavorable factors such as data forced segmentation alignment, independent hypothesis, and multi-module individual training inherited from HMM, while the end-to-end model has a simplified model, joint training, direct output, no need to force data alignment and other advantages. Therefore, the end-to-end model is an important research direction of speech recognition. In this paper we review the development of end-to-end model. This paper first introduces the basic ideas, advantages and disadvantages of HMM-based model and end-to-end models, and points out that end-to-end model is the development direction of speech recognition. Then the article focuses on the principles, progress and research hotspots of three different end-to-end models, which are connectionist temporal classification (CTC)-based, recurrent neural network (RNN)-transducer and attention-based, and makes theoretically and experimentally detailed comparisons. Their respective advantages and disadvantages and the possible future development of the end-to-end model are finally pointed out. Automatic speech recognition is a pattern recognition task in the field of computer science, which is a subject area of Symmetry.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] END-TO-END AUTOMATIC SPEECH TRANSLATION OF AUDIOBOOKS
    Berard, Alexandre
    Besacier, Laurent
    Kocabiyikoglu, Ali Can
    Pietquin, Olivier
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 6224 - 6228
  • [42] END-TO-END TRAINING OF A LARGE VOCABULARY END-TO-END SPEECH RECOGNITION SYSTEM
    Kim, Chanwoo
    Kim, Sungsoo
    Kim, Kwangyoun
    Kumar, Mehul
    Kim, Jiyeon
    Lee, Kyungmin
    Han, Changwoo
    Garg, Abhinav
    Kim, Eunhyang
    Shin, Minkyoo
    Singh, Shatrughan
    Heck, Larry
    Gowda, Dhananjaya
    2019 IEEE AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING WORKSHOP (ASRU 2019), 2019, : 562 - 569
  • [43] Bridging automatic speech recognition and psycholinguistics: Extending Shortlist to an end-to-end model of human speech recognition (L)
    Scharenborg, Odette
    Ten Bosch, Louis
    Boves, Lou
    Norris, Dennis
    1600, Acoustical Society of America (114):
  • [44] Bridging automatic speech recognition. and psycholinguistics: Extending Shortlist to an end-to-end model of human speech recognition
    Scharenborg, O
    ten Bosch, L
    Boves, L
    Norris, D
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2003, 114 (06): : 3032 - 3035
  • [45] END-TO-END VISUAL SPEECH RECOGNITION WITH LSTMS
    Petridis, Stavros
    Li, Zuwei
    Pantic, Maja
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 2592 - 2596
  • [46] An End-to-End model for Vietnamese speech recognition
    Van Huy Nguyen
    2019 IEEE - RIVF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION TECHNOLOGIES (RIVF), 2019, : 307 - 312
  • [47] SYNCHRONOUS TRANSFORMERS FOR END-TO-END SPEECH RECOGNITION
    Tian, Zhengkun
    Yi, Jiangyan
    Bai, Ye
    Tao, Jianhua
    Zhang, Shuai
    Wen, Zhengqi
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 7884 - 7888
  • [48] End-to-End Speech Recognition of Tamil Language
    Changrampadi, Mohamed Hashim
    Shahina, A.
    Narayanan, M. Badri
    Khan, A. Nayeemulla
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 32 (02): : 1309 - 1323
  • [49] PARAMETER UNCERTAINTY FOR END-TO-END SPEECH RECOGNITION
    Braun, Stefan
    Liu, Shih-Chii
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 5636 - 5640
  • [50] End-to-End Speech Recognition For Arabic Dialects
    Seham Nasr
    Rehab Duwairi
    Muhannad Quwaider
    Arabian Journal for Science and Engineering, 2023, 48 : 10617 - 10633