Exact formula for the expectation of the ratio of the sum of squares by the square of the sum

被引:2
|
作者
Fuchs, A
Joffe, A
机构
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1997年 / 325卷 / 08期
关键词
D O I
10.1016/S0764-4442(97)80136-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X-n)(n greater than or equal to 1) be a sequence of identically distributed independent nonnegative random variables satisfying P { X-1 = 0} < 1. The asymptotic behaviour of the ratio R-n = E[(X-1(2) + ... + X-n(2))/(X-1 + ... + X-n)(2)] has been studied by McLeish and O'Brien. We derive an exact representation for R-n by means of the Laplace transform phi of X-1, i.e., phi (s) = E [e(-sX1)] = integral(0)(+infinity) e(-sx) dF (x), s > 0, where F denotes the distribution function of X-1. This representation allows us to provide new proofs of several asymptotic theorems on R-n, and to extend some results obtained by those authors.
引用
收藏
页码:907 / 909
页数:3
相关论文
共 50 条
  • [21] The origins of quark-hadron duality: how does the square of the sum become the sum of the squares?
    Close, FE
    Isgur, N
    PHYSICS LETTERS B, 2001, 509 (1-2) : 81 - 86
  • [22] SUM OF SQUARES
    GEORGHIOU, C
    BRUCKMAN, PS
    FREITAG, HT
    KAPPUS, H
    KUIPERS, L
    PRIELIPP, B
    SEIFFERT, HJ
    SINGH, S
    DIPORTO, A
    FILIPPONI, P
    FIBONACCI QUARTERLY, 1988, 26 (04): : 376 - 376
  • [23] The asymptotic formula for the number of representations of an integer as a sum of five squares
    Bateman, PT
    ANALYTIC NUMBER THEORY, VOL 1: PROCEEDINGS OF A CONFERENCE IN HONOR OF HEINI HALBERSTAM, 1996, 138 : 129 - 139
  • [24] SUM FORMULA
    PHILIPPOU, AN
    MAKRI, FS
    FIBONACCI QUARTERLY, 1986, 24 (03): : 286 - 287
  • [25] Sum of Cubes and the Square of Sum of Cubes
    Ohtsuka, Hideyuki
    FIBONACCI QUARTERLY, 2014, 52 (04): : 369 - 369
  • [26] Sum formula
    Gauthier, N
    FIBONACCI QUARTERLY, 1998, 36 (04): : 383 - 384
  • [27] SUM FORMULA
    PHILIPPOU, AN
    FIBONACCI QUARTERLY, 1985, 23 (04): : 380 - 382
  • [28] SUM FORMULA
    GEORGHIOU, C
    FIBONACCI QUARTERLY, 1986, 24 (02): : 187 - 188
  • [29] SOME NEW PROOFS OF THE SUM FORMULA AND RESTRICTED SUM FORMULA
    Chang, C. Y.
    TAMKANG JOURNAL OF MATHEMATICS, 2013, 44 (02): : 123 - 129
  • [30] SUM OF 3 SQUARES
    PRIELIPP, B
    FIBONACCI QUARTERLY, 1986, 24 (03): : 281 - 282