Long short-term memory

被引:9179
|
作者
Hochreiter, S [1 ]
Schmidhuber, J [1 ]
机构
[1] IDSIA, CH-6900 LUGANO, SWITZERLAND
关键词
D O I
10.1162/neco.1997.9.8.1735
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient-based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error now through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O(1). Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.
引用
收藏
页码:1735 / 1780
页数:46
相关论文
共 50 条
  • [21] A review on the long short-term memory model
    Greg Van Houdt
    Carlos Mosquera
    Gonzalo Nápoles
    [J]. Artificial Intelligence Review, 2020, 53 : 5929 - 5955
  • [22] Short-Term Traffic Prediction Using Long Short-Term Memory Neural Networks
    Abbas, Zainab
    Al-Shishtawy, Ahmad
    Girdzijauskas, Sarunas
    Vlassov, Vladimir
    [J]. 2018 IEEE INTERNATIONAL CONGRESS ON BIG DATA (IEEE BIGDATA CONGRESS), 2018, : 57 - 65
  • [23] Integrating Long Short-Term Memory and Genetic Algorithm for Short-Term Load Forecasting
    Santra, Arpita Samanta
    Lin, Jun-Lin
    [J]. ENERGIES, 2019, 12 (11)
  • [24] Short-Term Relay Quality Prediction Algorithm Based on Long and Short-Term Memory
    XUE Wendong
    CHAI Yuan
    LI Qigan
    HONG Yongqiang
    ZHENG Gaofeng
    [J]. Instrumentation, 2018, 5 (04) : 46 - 54
  • [25] Short-Term Prediction of Wind Power Based on Deep Long Short-Term Memory
    Qu Xiaoyun
    Kang Xiaoning
    Zhang Chao
    Jiang Shuai
    Ma Xiuda
    [J]. 2016 IEEE PES ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2016, : 1148 - 1152
  • [26] Short-Term Photovoltaic Power Forecast Based on Long Short-Term Memory Network
    Shi, Min
    Xu, Ke
    Wang, Jue
    Yin, Rui
    Wang, Tieqiang
    Yong, Taiyou
    Hongyuan, Tianjin
    [J]. PROCEEDINGS OF 2019 IEEE 3RD INTERNATIONAL ELECTRICAL AND ENERGY CONFERENCE (CIEEC), 2019, : 2110 - 2116
  • [27] Research on short-term disease risk prediction based on long short-term memory
    Feng, Yanjun
    Wang, Hongxia
    [J]. BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2021, 128 : 176 - 176
  • [28] Short-term wind power prediction based on combined long short-term memory
    Zhao, Yuyang
    Li, Lincong
    Guo, Yingjun
    Shi, Boming
    Sun, Hexu
    [J]. IET GENERATION TRANSMISSION & DISTRIBUTION, 2024, 18 (05) : 931 - 940
  • [29] EFFECTS OF SHORT-TERM-MEMORY CONTENTS ON SHORT-TERM AND LONG-TERM-MEMORY SEARCHES
    MOHS, RC
    WESCOURT, KT
    ATKINSON, RC
    [J]. MEMORY & COGNITION, 1973, 1 (04) : 443 - 448
  • [30] EVIDENCE FOR SHORT-TERM AND LONG-TERM MEMORY IN MONKEYS
    MEDIN, DL
    [J]. AMERICAN JOURNAL OF PSYCHOLOGY, 1972, 85 (01): : 117 - &