Blind Separation of Convolutive sEMG Mixtures based on Independent Vector Analysis

被引:0
|
作者
Wang, Xiaomei [1 ]
Guo, Yina [1 ]
Tian, Wenyan [1 ]
机构
[1] Taiyuan Univ Sci & Technol, Taiyuan 030024, Shanxi, Peoples R China
关键词
Convolutive mixtures; blind source separation (BSS); surface electromyography (sEMG); independent vector analysis (IVA);
D O I
10.1117/12.2228722
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An independent vector analysis (IVA) method base on variable-step gradient algorithm is proposed in this paper. According to the sEMG physiological properties, the IVA model is applied to the frequency-domain separation of convolutive sEMG mixtures to extract motor unit action potentials information of sEMG signals. The decomposition capability of proposed mehod is compared to the one of independent component analysis (ICA), and experimental results show the variable-step gradient IVA method outperforms ICA in blind separation of convolutive sEMG mixtures.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Blind adaptive equalization and simultaneous separation of convolutive mixtures
    Touzni, A
    Fijalkow, I
    [J]. DSP 97: 1997 13TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING PROCEEDINGS, VOLS 1 AND 2: SPECIAL SESSIONS, 1997, : 391 - 394
  • [42] BLIND SEPARATION OF CONVOLUTIVE MIXTURES OVER GALOIS FIELDS
    Fantinato, Denis G.
    Silva, Daniel G.
    Nadalin, Everton Z.
    Attux, Romis
    Romano, Joao M. T.
    Neves, Aline
    Montalvao, Jugurta
    [J]. 2013 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2013,
  • [43] Blind Source Separation for Convolutive Mixtures with Neural Networks
    Kirei, Botond Sandor
    Topa, Marina Dana
    Muresan, Irina
    Homana, Ioana
    Toma, Norbert
    [J]. ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2011, 11 (01) : 63 - 68
  • [44] A Nonlinear Prediction Approach to the Blind Separation of Convolutive Mixtures
    Ricardo Suyama
    Leonardo Tomazeli Duarte
    Rafael Ferrari
    Leandro Elias Paiva Rangel
    Romis Ribeirode Faissol Attux
    Charles Casimiro Cavalcante
    Fernando José Von Zuben
    João Marcos Travassos Romano
    [J]. EURASIP Journal on Advances in Signal Processing, 2007
  • [45] Convolutive transfer function-based independent component analysis for overdetermined blind source separation
    Wang, Taihui
    Yang, Feiran
    Li, Nan
    Zhang, Chen
    Yang, Jun
    [J]. 2022 16TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP2022), VOL 1, 2022, : 22 - 26
  • [46] A nonlinear prediction approach to the blind separation of convolutive mixtures
    Suyama, Ricardo
    Duarte, Leonardo Tomazeli
    Ferrari, Rafael
    Rangel, Leandro Elias Paiva
    de Faissol Attux, Romis Ribeiro
    Cavalcante, Charles Casimiro
    Von Zuben, Fernando Jose
    Romano, Joao Marcos Travassos
    [J]. EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2007, 2007 (1)
  • [47] Blind separation of convolutive mixtures based on second order and third order statistics
    Ye, ZF
    Chang, CQ
    Wang, C
    Zhao, J
    Chan, FHY
    [J]. 2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL V, PROCEEDINGS: SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO AND ELECTROACOUSTICS MULTIMEDIA SIGNAL PROCESSING, 2003, : 305 - 308
  • [48] An algorithm based on nonlinear PCA and regulation for blind source separation of convolutive mixtures
    Ma, Liyan
    Li, Hongwei
    [J]. BIO-INSPIRED COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2007, 4688 : 1 - +
  • [49] Batch and Adaptive PARAFAC-Based Blind Separation of Convolutive Speech Mixtures
    Nion, Dimitri
    Mokios, Kleanthis N.
    Sidiropoulos, Nicholas D.
    Potamianos, Alexandros
    [J]. IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2010, 18 (06): : 1193 - 1207
  • [50] A BOUNDED COMPONENT ANALYSIS APPROACH FOR THE SEPARATION OF CONVOLUTIVE MIXTURES OF DEPENDENT AND INDEPENDENT SOURCES
    Inan, Huseyin A.
    Erdogan, Alper T.
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 3223 - 3227