Effect of surfactants on preparation of high concentration graphene aqueous dispersion

被引:1
|
作者
Wang Chen [1 ]
Yan Shao-jiu [1 ]
Nan Wen-zheng [1 ]
Chen Xiang [1 ]
机构
[1] AECC Beijing Inst Aeronaut Mat, Res Ctr Graphene Applicat, Beijing 100095, Peoples R China
来源
关键词
surfactant; structure; concentration; graphene aqueous dispersion; LIQUID-PHASE EXFOLIATION; GRAPHITE; ENERGY;
D O I
10.11868/j.issn.1001-4381.2018.000566
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The effects of surfactant structure and concentration on the preparation of high concentration graphene aqueous dispersion by HPH-LPE were systematically studied by UV-Vis spectra, TEM and laser granularity analyser. Three different types of surfactants were used : anionic, cationic and non-ionic. It is found that long hydrophobic segment, double bond and benzene ring structure is the key structure that can promote the performance of the surfactant and the optimum concentration of the surfactant is slightly higher than critical micelle concentration (C-CMC). In the test range, Tween80 presents the best performance. The optimum concentration is 0. 012mmol . L-1 and the obtained graphene aqueous dispersion concentration is 564. 3mg . L-1. However, it seems no significant effect on the graphene quality of surfactant structure and concentration.
引用
收藏
页码:50 / 56
页数:7
相关论文
共 25 条
  • [1] Superior thermal conductivity of single-layer graphene
    Balandin, Alexander A.
    Ghosh, Suchismita
    Bao, Wenzhong
    Calizo, Irene
    Teweldebrhan, Desalegne
    Miao, Feng
    Lau, Chun Ning
    [J]. NANO LETTERS, 2008, 8 (03) : 902 - 907
  • [2] Ultrahigh electron mobility in suspended graphene
    Bolotin, K. I.
    Sikes, K. J.
    Jiang, Z.
    Klima, M.
    Fudenberg, G.
    Hone, J.
    Kim, P.
    Stormer, H. L.
    [J]. SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) : 351 - 355
  • [3] Liquid-Phase Exfoliation of Graphite Towards Solubilized Graphenes
    Bourlinos, Athanasios B.
    Georgakilas, Vasilios
    Zboril, Radek
    Steriotis, Theodore A.
    Stubos, Athanasios K.
    [J]. SMALL, 2009, 5 (16) : 1841 - 1845
  • [4] Impermeable atomic membranes from graphene sheets
    Bunch, J. Scott
    Verbridge, Scott S.
    Alden, Jonathan S.
    van der Zande, Arend M.
    Parpia, Jeevak M.
    Craighead, Harold G.
    McEuen, Paul L.
    [J]. NANO LETTERS, 2008, 8 (08) : 2458 - 2462
  • [5] From graphite to graphene: direct liquid-phase exfoliation of graphite to produce single- and few-layered pristine graphene
    Du, Wencheng
    Jiang, Xiaoqing
    Zhu, Lihua
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (36) : 10592 - 10606
  • [6] He Xia He Xia, 2019, Journal of Northeast Forestry University, V47, P1
  • [7] High-yield production of graphene by liquid-phase exfoliation of graphite
    Hernandez, Yenny
    Nicolosi, Valeria
    Lotya, Mustafa
    Blighe, Fiona M.
    Sun, Zhenyu
    De, Sukanta
    McGovern, I. T.
    Holland, Brendan
    Byrne, Michele
    Gun'ko, Yurii K.
    Boland, John J.
    Niraj, Peter
    Duesberg, Georg
    Krishnamurthy, Satheesh
    Goodhue, Robbie
    Hutchison, John
    Scardaci, Vittorio
    Ferrari, Andrea C.
    Coleman, Jonathan N.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (09) : 563 - 568
  • [8] A manufacturing perspective on graphene dispersions
    Johnson, David W.
    Dobson, Ben P.
    Coleman, Karl S.
    [J]. CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2015, 20 (5-6) : 367 - 382
  • [9] Kumar P., 2014, INT J ENG ANG TECHNO, V5, P16
  • [10] Aqueous dispersion stability of multi-carbon nanoparticles in anionic, cationic, neutral, bile salt and pulmonary surfactant solutions
    Kumar, Pradip
    Bohidar, H. B.
    [J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2010, 361 (1-3) : 13 - 24