Superior thermal conductivity of single-layer graphene

被引:11374
|
作者
Balandin, Alexander A. [1 ,2 ]
Ghosh, Suchismita [1 ]
Bao, Wenzhong [3 ]
Calizo, Irene [1 ]
Teweldebrhan, Desalegne [1 ]
Miao, Feng [3 ]
Lau, Chun Ning [3 ]
机构
[1] Univ Calif Riverside, Dept Elect Engn, Nanodevice Lab, Riverside, CA 92521 USA
[2] Univ Calif Riverside, Bourns Coll Engn, Mat Sci & Engn Program, Riverside, CA 92521 USA
[3] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA
关键词
D O I
10.1021/nl0731872
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report the measurement of the thermal conductivity of a suspended single-layer graphene. The room temperature values of the thermal conductivity in the range similar to(4.84 +/- 0.44) x 10(3) to (5.30 +/- 0.48) x 10(3) W/mK were extracted for a single-layer graphene from the dependence of the Raman G peak frequency on the excitation laser power and independently measured G peak temperature coefficient. The extremely high value of the thermal conductivity suggests that graphene can outperform carbon nanotubes in heat conduction. The superb thermal conduction property of graphene is beneficial for the proposed electronic applications and establishes graphene as an excellent material for thermal management.
引用
收藏
页码:902 / 907
页数:6
相关论文
共 50 条
  • [1] Length-dependent thermal conductivity in suspended single-layer graphene
    Xu, Xiangfan
    Pereira, Luiz F. C.
    Wang, Yu
    Wu, Jing
    Zhang, Kaiwen
    Zhao, Xiangming
    Bae, Sukang
    Cong Tinh Bui
    Xie, Rongguo
    Thong, John T. L.
    Hong, Byung Hee
    Loh, Kian Ping
    Donadio, Davide
    Li, Baowen
    Oezyilmaz, Barbaros
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [2] Length-dependent thermal conductivity in suspended single-layer graphene
    Xiangfan Xu
    Luiz F. C. Pereira
    Yu Wang
    Jing Wu
    Kaiwen Zhang
    Xiangming Zhao
    Sukang Bae
    Cong Tinh Bui
    Rongguo Xie
    John T. L. Thong
    Byung Hee Hong
    Kian Ping Loh
    Davide Donadio
    Baowen Li
    Barbaros Özyilmaz
    [J]. Nature Communications, 5
  • [3] THE PHONON THERMAL CONDUCTIVITY OF A SINGLE-LAYER GRAPHENE FROM COMPLETE PHONON DISPERSION RELATIONS
    Gu, Yunfeng
    Ni, Zhonghua
    Chen, Minhua
    Bi, Kedong
    Chen, Yunfei
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2010, VOL 7, PTS A AND B, 2012, : 493 - 501
  • [4] Molecular Dynamics Calculation of the Thermal Conductivity Coefficient of Single-Layer and Multilayer Graphene Sheets
    Selezenev, A. A.
    Aleinikov, A. Yu.
    Ganchuk, N. S.
    Ganchuk, S. N.
    Jones, R. E.
    Zimmerman, J. A.
    [J]. PHYSICS OF THE SOLID STATE, 2013, 55 (04) : 889 - 894
  • [5] Molecular dynamics calculation of the thermal conductivity coefficient of single-layer and multilayer graphene sheets
    A. A. Selezenev
    A. Yu. Aleinikov
    N. S. Ganchuk
    S. N. Ganchuk
    R. E. Jones
    J. A. Zimmerman
    [J]. Physics of the Solid State, 2013, 55 : 889 - 894
  • [6] The Phonon Thermal Conductivity of Single-Layer Graphene From Complete Phonon Dispersion Relations
    Gu, Yunfeng
    Ni, Zhonghua
    Chen, Minhua
    Bi, Kedong
    Chen, Yunfei
    [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2012, 134 (06):
  • [7] Experimental study on thermal conductivity of free-standing fluorinated single-layer graphene
    Narasaki, Masahiro
    Wang, Haidong
    Nishiyama, Takashi
    Ikuta, Tatsuya
    Takahashi, Koji
    [J]. APPLIED PHYSICS LETTERS, 2017, 111 (09)
  • [8] Superior lattice thermal conductance of single-layer borophene
    Hangbo Zhou
    Yongqing Cai
    Gang Zhang
    Yong-Wei Zhang
    [J]. npj 2D Materials and Applications, 1
  • [9] Superior lattice thermal conductance of single-layer borophene
    Zhou, Hangbo
    Cai, Yongqing
    Zhang, Gang
    Zhang, Yong-Wei
    [J]. NPJ 2D MATERIALS AND APPLICATIONS, 2017, 1
  • [10] Determining porosity effect on the thermal conductivity of single-layer graphene using a molecular dynamics simulation
    Fang, Te-Hua
    Lee, Zhe-Wei
    Chang, Win-Jin
    Huang, Chao-Chun
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2019, 106 : 90 - 94