Fourier pseudo-spectral method for the extended Fisher-Kolmogorov equation in two dimensions

被引:15
|
作者
Liu, Fengnan [1 ]
Zhao, Xiaopeng [2 ]
Liu, Bo [1 ]
机构
[1] Jilin Univ, Coll Math, Qianjin St, Changchun 130012, Peoples R China
[2] Jiangnan Univ, Sch Sci, Lihu Rd, Wuxi 214122, Peoples R China
关键词
extended Fisher-Kolmogorov equation; Fourier pseudo-spectral method; stability; convergence; error estimate; VELOCITY SELECTION; MARGINAL STABILITY; PROPAGATION; DIFFUSION;
D O I
10.1186/s13662-017-1154-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the study of pattern formation in bi-stable systems, the extended Fisher-Kolmogorov (EFK) equation plays an important role. In this paper, a Fourier pseudo-spectral method for solving the EFK equation in two space dimensions is presented. Prior bounds are proved using Lyapunov function. Further, optimal error estimates are established for the semi-discrete scheme. Finally, a fully discrete scheme based on Crank-Nicolson method is proposed, and related optimal error estimates are derived and some numerical experiments are presented.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Global dynamics of stationary solutions of the extended Fisher-Kolmogorov equation
    Llibre, Jaume
    Messias, Marcelo
    da Silva, Paulo R.
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (11)
  • [22] Direct local boundary integral equation method for numerical solution of extended Fisher-Kolmogorov equation
    Ilati, Mohammad
    Dehghan, Mehdi
    ENGINEERING WITH COMPUTERS, 2018, 34 (01) : 203 - 213
  • [23] Global attractor of the extended Fisher-Kolmogorov equation in Hk spaces
    Luo, Hong
    BOUNDARY VALUE PROBLEMS, 2011, : 1 - 10
  • [24] Chaotic spatial patterns described by the extended Fisher-Kolmogorov equation
    Peletier, LA
    Troy, WC
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 129 (02) : 458 - 508
  • [25] Global attractor of the extended Fisher-Kolmogorov equation in Hk spaces
    Hong Luo
    Boundary Value Problems, 2011
  • [26] An efficient computational approach for solving two-dimensional extended Fisher-Kolmogorov equation
    Ismail, Kaouther
    Rahmeni, Mohamed
    Omrani, Khaled
    APPLICABLE ANALYSIS, 2023, 102 (17) : 4699 - 4716
  • [27] A conservative Fourier pseudo-spectral method for the nonlinear Schrodinger equation
    Gong, Yuezheng
    Wang, Qi
    Wang, Yushun
    Cai, Jiaxiang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 328 : 354 - 370
  • [28] On the transition from the Ginzburg-Landau equation to the extended Fisher-Kolmogorov equation
    Rottschafer, V
    Doelman, A
    PHYSICA D, 1998, 118 (3-4): : 261 - 292
  • [29] Explicit Integrating Factor Runge-Kutta Method for the Extended Fisher-Kolmogorov Equation
    Wang, Yanan
    Zhai, Shuying
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2023, 28 (06)
  • [30] An Efficient Technique to Study Time Fractional Extended Fisher-Kolmogorov Equation
    Pavani, K.
    Raghavendar, K.
    Aruna, K.
    CONTEMPORARY MATHEMATICS, 2024, 5 (02): : 1200 - 1215