Comparison of feedback controllers for feedback-error-learning neural network control system with application to a flexible micro-actuator

被引:1
|
作者
Kawafuku, M
Sasaki, M
Takahashi, K
机构
[1] Gifu Univ, Dept Mech & Syst Engn, Gifu 5011193, Japan
[2] Int Media Integrat Commun Res Labs, Adv Telecommun Res Inst, Seika, Kyoto 6190288, Japan
关键词
neural network; actuator; learning control; feedback-error-learning; flexible micro-actuator;
D O I
10.1299/jsmec.43.149
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A feedback-error-learning neural network: approach to on-line learning control and real time implementation for a flexible micro-actuator is presented. The flexible micro-actuator is made of a bimorphic piezo-electric high-polymer material (Poly Vinylidene Fluoride). The control scheme consists of a feedforward neural network controller and a fixed-gain feedback controller. This neural network controller is trained so as to make the output of the feedback controller zero. In the process, the neural network learns the inverse dynamics of the system. We make some comparisons between using PID and LQG controllers with this neural network controller. Experimental and numerical results for the tracking control of a piezopolymer actuator are presented and they show that the feedback-error-learning neural network is effective in accurately tracking a reference signal.
引用
收藏
页码:149 / 156
页数:8
相关论文
共 50 条
  • [31] Adaptive neural network output feedback control of nonlinear systems with actuator saturation
    Gao, Wenzhi
    Selmic, Rastko R.
    2005 44th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8, 2005, : 5522 - 5527
  • [32] Neural network position control of XY piezo actuator stage by visual feedback
    Cas, Jure
    Skorc, Gregor
    Safaric, Riko
    NEURAL COMPUTING & APPLICATIONS, 2010, 19 (07): : 1043 - 1055
  • [33] Neural network position control of XY piezo actuator stage by visual feedback
    Jure Čas
    Gregor Škorc
    Riko Šafarič
    Neural Computing and Applications, 2010, 19 : 1043 - 1055
  • [34] Sliding Mode Output Feedback Control of Electromechanical Actuator Based on Neural Network
    Cao, Mengmeng
    Hu, Jian
    Zhou, Haibo
    Yao, Jianyong
    Zhao, Jieyan
    Wang, Junlong
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2023, 59 (10): : 357 - 365
  • [35] Neural Network Adaptive Output Feedback Control of Flexible Link Manipulators
    Farmanbordar, A.
    Hoseini, S. M.
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2013, 135 (02):
  • [36] Flow control using a combination of robust and NeuroFuzzy controllers in feedback error learning framework
    Adlgostar, R.
    Kouhi, Y.
    Teshnehlab, M.
    Aliyari, M.
    2006 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS 1-6, 2006, : 1870 - +
  • [37] Fuzzy-net control of non-holonomic mobile robot using evolutionary feedback-error-learning
    Technical Univ Sofia, Plovdiv, Bulgaria
    Rob Autom Syst, 3 (187-200):
  • [38] Iterative learning feedback control of network inverse system
    Yang, Xuelian
    INTERNATIONAL JOURNAL OF INTERNET PROTOCOL TECHNOLOGY, 2021, 14 (04) : 189 - 196
  • [39] The Neural Feedback Response to Error As a Teaching Signal for the Motor Learning System
    Albert, Scott T.
    Shadmehr, Reza
    JOURNAL OF NEUROSCIENCE, 2016, 36 (17): : 4832 - 4845
  • [40] Multi-Network-Feedback-Error-Learning in pelletizing plant control
    de Almeida Ribeiro, Paulo Rogerio
    Neto, Areolino de Almeida
    Muniz de Oliveira, Alexandre Cesar
    2ND IEEE INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER CONTROL (ICACC 2010), VOL. 2, 2010, : 340 - 344