Single-trial classification of vowel speech imagery using common spatial patterns

被引:170
|
作者
DaSalla, Charles S. [1 ,3 ]
Kambara, Hiroyuki [2 ,3 ]
Sato, Makoto [2 ]
Koike, Yasuharu [2 ,3 ]
机构
[1] Tokyo Inst Technol, Dept Computat Intelligence & Syst Sci, Midori Ku, Yokohama, Kanagawa 2268503, Japan
[2] Tokyo Inst Technol, Precis & Intelligence Lab, Yokohama, Kanagawa 2268503, Japan
[3] Japan Sci & Technol Agcy, CREST, Kawaguchi, Saitama, Japan
基金
日本科学技术振兴机构;
关键词
EEG; Vowel; Speech; Imagery; CSP; BRAIN POTENTIALS; EEG;
D O I
10.1016/j.neunet.2009.05.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the goal of providing a speech prosthesis for individuals with severe communication impairments. we propose a control scheme for brain-computer interfaces using vowel speech imagery. Electroencephalography was recorded in three healthy subjects for three tasks, imaginary speech of the English vowels /a/ and /u/, and a no action state as control. Trial averages revealed readiness potentials at 200 ms after stimulus and speech related potentials peaking after 350 iris Spatial filters optimized for task discrimination were designed using the common spatial patterns method, and the resultant feature vectors were classified using a nonlinear support vector machine. Overall classification accuracies ranged from 68% to 78%. Results indicate significant potential for the use of vowel speech imagery as a speech prosthesis controller. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1334 / 1339
页数:6
相关论文
共 50 条
  • [41] Extracting Patterns of Single-Trial EEG Using an Adaptive Learning Algorithm
    Lin, Chin-Teng
    Wang, Yu-Kai
    Fang, Chieh-Ning
    Yu, Yi-Hsin
    King, Jung-Tai
    2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 6642 - 6645
  • [42] Extension of common spatial pattern (CSP) algorithm to multi-task case by Jacobi Rotations for single-trial EEG classification
    Liu, Lin
    Wei, Qingguo
    2009 4TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING, 2009, : 340 - +
  • [43] Single-Trial EEG RSVP Classification using Convolutional Neural Networks
    Shamwell, Jared
    Lee, Yungtae
    Kwon, Heesung
    Marathe, Amar R.
    Lawhern, Vernon
    Nothwang, William
    MICRO- AND NANOTECHNOLOGY SENSORS, SYSTEMS, AND APPLICATIONS VIII, 2016, 9836
  • [44] Single-Trial Cognitive Stress Classification Using Portable Wireless Electroencephalography
    Blanco, Justin A.
    Vanleer, Ann C.
    Calibo, Taylor K.
    Firebaugh, Samara L.
    SENSORS, 2019, 19 (03)
  • [45] Learning subject-specific spatial and temporal filters for single-trial EEG classification
    Model, Dmitri
    Zibulevsky, Michael
    NEUROIMAGE, 2006, 32 (04) : 1631 - 1641
  • [47] Classifying vowel speech imagery using EEG cortical currents
    Yoshimura, Natsue
    DaSalla, Charles S.
    Satsuma, Aruha
    Hanakawa, Takashi
    Sato, Masa-aki
    Koike, Yasuharu
    NEUROSCIENCE RESEARCH, 2011, 71 : E202 - E202
  • [48] Vowel decoding from single-trial speech-evoked electrophysiological responses: A feature-based machine learning approach
    Yi, Han G.
    Xie, Zilong
    Reetzke, Rachel
    Dimakis, Alexandros G.
    Chandrasekaran, Bharath
    BRAIN AND BEHAVIOR, 2017, 7 (06):
  • [49] Single-Trial EEG Classification Using Logistic Regression Based on Ensemble Synchronization
    Prasad, Pradeep D.
    Halahalli, Harsha N.
    John, John P.
    Majumdar, Kaushik K.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2014, 18 (03) : 1074 - 1080
  • [50] Classification of single-trial electroencephalogram during finger movement
    Li, Y
    Gao, XR
    Liu, HH
    Gao, SK
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (06) : 1019 - 1025