Self-renewal of human embryonic stem cells is supported by a shortened G1 cell cycle phase

被引:335
|
作者
Becker, Klaus A.
Ghule, Prachi N.
Therrien, Jaclyn A.
Lian, Jane B.
Stein, Janet L.
Van Wijnen, Andre J.
Stein, Gary S. [1 ]
机构
[1] Univ Massachusetts, Sch Med, Dept Cell Biol, Worcester, MA 01655 USA
[2] Univ Massachusetts, Sch Med, Ctr Canc, Worcester, MA 01655 USA
关键词
HISTONE GENE-TRANSCRIPTION; S-PHASE; MOLECULAR SIGNATURE; HINF-P; DIFFERENTIATION; EXPRESSION; LINES; PROLIFERATION; REPLICATION; DERIVATION;
D O I
10.1002/jcp.20776
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Competency for self-renewal of human embryonic stem (ES) cells is linked to pluripotency. However, there is a critical paucity of fundamental parameters of human ES cell division. In this study we show that human ES cells (HI and H9; NIH-designated WA01 and WA09) rapidly proliferate due to a very short overall cell cycle (15-16 h) compared to somatic cells (e.g., normal diploid IMR90 fibroblasts and NT-2 teratocarcinoma cells). The human ES cell cycle maintains the four canonical cell cycle stages G1, S, G2, and M, but the duration of G1 is dramatically shortened. Bromodeoxyuridine (BrdU) incorporation and FACS analysis demonstrated that 65% of asynchronously growing human ES cells are in S phase. Immunofluorescence microscopy studies detecting BrdU labeled mitotic chromosomes, Ki67 domains, and p220(NPAT) containing Cajal bodies revealed that the durations of the S (similar to 8 h), G2 (similar to 4 h), and M phases(similar to 1 h) are similar in ES and somatic cells. We determined that human ES cells remain viable after synchronization with either nocodazole or the anti-tumor drug Paclitaxel (taxol) and have an abbreviated G1 phase of only 2.5-3 h that is significantly shorter than in somatic cells. Molecular analyses using quantitative RT-PCR demonstrate that human ES cells and somatic cells express similar cell cycle markers. However, among cyclins and cyclin-dependent kinases (CDKs), we observed high mRNA levels for the G1 related CDK4 and cyclin D2 genes. We conclude that human ES cells exhibit unique G1 cell cycle kinetics and use CDK4/cyclin D2 related mechanisms to attain competency for DNA replication.
引用
收藏
页码:883 / 893
页数:11
相关论文
共 50 条
  • [41] Self-renewal proliferation and lymphohematopoietic differentiation of human embryonic stem cells in culture
    Cheng, L
    Zang, X
    Dravid, G
    Ye, Z
    Hammond, H
    EXPERIMENTAL HEMATOLOGY, 2003, 31 (07) : 132 - 132
  • [42] Nanotopography Influences Adhesion, Spreading, and Self-Renewal of Human Embryonic Stem Cells
    Chen, Weiqiang
    Villa-Diaz, Luis G.
    Sun, Yubing
    Weng, Shinuo
    Kim, Jin Koo
    Lam, Raymond H. W.
    Han, Lin
    Fan, Rong
    Krebsbach, Paul H.
    Fu, Jianping
    ACS NANO, 2012, 6 (05) : 4094 - 4103
  • [43] Identification of small molecules that promote human embryonic stem cell self-renewal
    Kumagai, Hideaki
    Suemori, Hirofumi
    Uesugi, Motonari
    Nakatsuji, Norio
    Kawase, Eihachiro
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2013, 434 (04) : 710 - 716
  • [44] Effects of Ionizing Radiation on Self-Renewal and Pluripotency of Human Embryonic Stem Cells
    Wilson, Kitchener D.
    Sun, Ning
    Huang, Mei
    Zhang, Wendy Y.
    Lee, Andrew S.
    Li, Zongjin
    Wang, Shan X.
    Wu, Joseph C.
    CANCER RESEARCH, 2010, 70 (13) : 5539 - 5548
  • [45] The Role of SMAD4 in Human Embryonic Stem Cell Self-Renewal and Stem Cell Fate
    Avery, Stuart
    Zafarana, Gaetano
    Gokhale, Paul J.
    Andrews, Peter W.
    STEM CELLS, 2010, 28 (05) : 863 - 873
  • [46] Embryonic Stem Cells Bypass Numerous Cell Cycle Checkpoints; Not Just G1
    Mantel, Charlie
    Broxmeyer, Hal E.
    BLOOD, 2008, 112 (11) : 480 - 481
  • [47] Self-renewal and differentiation of pluripotent embryonic stem cells.
    Smith, AG
    DEVELOPMENTAL BIOLOGY, 2001, 235 (01) : 289 - 290
  • [48] Cdk1 Is Required for the Self-Renewal of Mouse Embryonic Stem Cells
    Zhang, Wei Wei
    Zhang, Xiao Jie
    Liu, Hui Xian
    Chen, Jie
    Ren, Yong Hong
    Huang, Deng Gao
    Zou, Xiang Hong
    Xiao, Wei
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2011, 112 (03) : 942 - 948
  • [49] The effect of resveratrol on pluripotency and self-renewal of embryonic stem cells
    Suvorova, I. I.
    Grigorash, B. B.
    HUMAN GENE THERAPY, 2016, 27 (11) : A176 - A176
  • [50] Transcriptional Regulation of Self-Renewal in Embryonic & Hematopoietic Stem Cells
    Reizis, Boris
    FASEB JOURNAL, 2009, 23