Metrizable and weakly metrizable coset spaces

被引:11
|
作者
Ling, Xuewei [1 ]
Lin, Shou [2 ]
He, Wei [1 ]
机构
[1] Nanjing Normal Univ, Inst Math, Nanjing 210046, Jiangsu, Peoples R China
[2] Ningde Normal Univ, Inst Math, Ningde 352100, Fujian, Peoples R China
关键词
Topological group; Semitopological group; Paratopological group; Quasitopological group; Coset space; Neutral subgroup; Metrizable space; Quasi-metrizable space; Semi-metrizable space; TOPOLOGICAL-GROUPS; BASE;
D O I
10.1016/j.topol.2021.107625
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study metrizable and weakly metrizable coset spaces. It is mainly shown that (1) If H is a closed neutral subgroup of a topological group G, then G/H is metrizable double left right arrow G/H is bisequential double left right arrow G/H is weakly first-countable double left right arrow G/H is a Frechet-Urysohn space with an omega(omega)-base; (2) If H is a closed neutral subgroup of a semitopological group G, then G/H is metrizable if and only if G/H is a paracompact feathered space with countable pi-character; (3) If H is a closed neutral subgroup of a paratopological group G such that G/H is a Hausdorff space, then G/H is quasi-metrizable if and only if G/H is first-countable; (4) If H is a closed neutral subgroup of a quasitopological group G, then G/H is semi-metrizable if and only if G/H is first-countable. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] OPTIMAL METRICS ON METRIZABLE SPACES
    JANOS, L
    ARCHIV DER MATHEMATIK, 1971, 22 (06) : 660 - &
  • [22] SOBOLEV SPACES ON METRIZABLE GROUPS
    Gorka, Przemyslaw
    Kostrzewa, Tomasz
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2015, 40 (02) : 837 - 849
  • [23] THE NUMBER OF METRIZABLE-SPACES
    HODEL, RE
    FUNDAMENTA MATHEMATICAE, 1983, 115 (02) : 127 - 141
  • [24] METRIZABLE GENERALIZED (LF)-SPACES
    SAXON, SA
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A143 - A143
  • [25] RECONSTRUCTING COMPACT METRIZABLE SPACES
    Gartside, Paul
    Pitz, Max F.
    Suabedissen, Rolf
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (01) : 429 - 443
  • [26] On one-point metrizable extensions of locally compact metrizable spaces
    Koushesh, M. R.
    TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (03) : 698 - 721
  • [27] tau-metrizable spaces
    Megaritis, A. C.
    APPLIED GENERAL TOPOLOGY, 2018, 19 (02): : 253 - 260
  • [28] METRIZABLE SUBSETS OF MOORE SPACES
    PROCTOR, CW
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 95 - &
  • [29] UNIFORM CONTINUITY ON METRIZABLE SPACES
    WONG, YM
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (02): : 437 - &
  • [30] Metrizable subspaces of representation spaces
    Charatonik, Wlodzimierz J.
    Insall, Matt
    Michalik, Daria
    TOPOLOGY AND ITS APPLICATIONS, 2023, 325