Metrizable and weakly metrizable coset spaces

被引:11
|
作者
Ling, Xuewei [1 ]
Lin, Shou [2 ]
He, Wei [1 ]
机构
[1] Nanjing Normal Univ, Inst Math, Nanjing 210046, Jiangsu, Peoples R China
[2] Ningde Normal Univ, Inst Math, Ningde 352100, Fujian, Peoples R China
关键词
Topological group; Semitopological group; Paratopological group; Quasitopological group; Coset space; Neutral subgroup; Metrizable space; Quasi-metrizable space; Semi-metrizable space; TOPOLOGICAL-GROUPS; BASE;
D O I
10.1016/j.topol.2021.107625
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study metrizable and weakly metrizable coset spaces. It is mainly shown that (1) If H is a closed neutral subgroup of a topological group G, then G/H is metrizable double left right arrow G/H is bisequential double left right arrow G/H is weakly first-countable double left right arrow G/H is a Frechet-Urysohn space with an omega(omega)-base; (2) If H is a closed neutral subgroup of a semitopological group G, then G/H is metrizable if and only if G/H is a paracompact feathered space with countable pi-character; (3) If H is a closed neutral subgroup of a paratopological group G such that G/H is a Hausdorff space, then G/H is quasi-metrizable if and only if G/H is first-countable; (4) If H is a closed neutral subgroup of a quasitopological group G, then G/H is semi-metrizable if and only if G/H is first-countable. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] COSET SPACES OF METRIZABLE GROUPS
    Antonyan, Sergey
    Antonyan, Natella
    Kozlov, Konstantin L.
    COLLOQUIUM MATHEMATICUM, 2022, 167 (01) : 1 - 20
  • [2] π-METRIZABLE SPACES AND STRONGLY π-METRIZABLE SPACES
    Lin, Fucai
    Lin, Shou
    HOUSTON JOURNAL OF MATHEMATICS, 2013, 39 (01): : 273 - 285
  • [3] Remainders of metrizable and close to metrizable spaces
    Arhangel'skii, A. V.
    FUNDAMENTA MATHEMATICAE, 2013, 220 (01) : 71 - 81
  • [4] METRIZABLE SPACES
    ROBINSON, SM
    AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (06): : 677 - &
  • [5] METRIZABLE AND 2-METRIZABLE TOPOLOGICAL SPACES
    Farhangdoost, M. R.
    JOURNAL OF DYNAMICAL SYSTEMS AND GEOMETRIC THEORIES, 2012, 10 (01) : 61 - 69
  • [6] O-METRIZABLE PROXIMITY SPACES ARE METRIZABLE
    KHADZHIIVANOV, NG
    NEDEV, SI
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1973, 26 (10): : 1289 - 1291
  • [7] Metrizable and R-metrizable betweenness spaces
    Simko, J
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (02) : 323 - 325
  • [8] ON METRIZABLE REMAINDERS OF LOCALLY COMPACT SEPARABLE METRIZABLE SPACES
    Chatyrko, Vitalij A.
    Karassev, Alexandre
    HOUSTON JOURNAL OF MATHEMATICS, 2013, 39 (03): : 1067 - 1081
  • [9] NON-METRIZABLE UNIFORMITIES AND PROXIMITIES ON METRIZABLE SPACES
    SHARMA, PL
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1973, 25 (05): : 979 - 981
  • [10] A study of γ-metrizable spaces
    Peng, Liang-Xue
    Xu, Ying-Kun
    TOPOLOGY AND ITS APPLICATIONS, 2020, 282