Multivariate outliers and decompositions of Mahalanobis distance

被引:28
|
作者
Kim, MG [1 ]
机构
[1] Seowon Univ, Dept Appl Stat, Chung Buk 361742, South Korea
关键词
correlation; influence curve; plots; sources of outlyingness;
D O I
10.1080/03610920008832559
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Two decompositions of the Mahalanobis distance are considered. These decompositions help to explain some reasons for the outlyingness of multivariate observations. They also provide a graphical tool for identifying outliers including those that have a large influence on the multiple correlation coefficient. Illustrative examples are given.
引用
收藏
页码:1511 / 1526
页数:16
相关论文
共 50 条
  • [21] Temporal dependence Mahalanobis distance for anomaly detection in multivariate spacecraft telemetry series
    Pang, Jingyue
    Liu, Datong
    Peng, Yu
    Peng, Xiyuan
    ISA TRANSACTIONS, 2023, 140 : 354 - 367
  • [22] Exploiting Multiple Mahalanobis Distance Metrics to Screen Outliers From Analog Product Manufacturing Test Responses
    Krishnan, Shaji
    Kerkhoff, Hans G.
    IEEE DESIGN & TEST, 2013, 30 (03) : 18 - 24
  • [23] Optimal Distance Bounds for the Mahalanobis Distance
    Emrich, Tobias
    Josse, Gregor
    Kriegel, Hans-Peter
    Mauder, Markus
    Niedermayer, Johannes
    Renz, Matthias
    Schubert, Matthias
    Zuefle, Andreas
    SIMILARITY SEARCH AND APPLICATIONS (SISAP), 2013, 8199 : 175 - 181
  • [24] Appropriate critical values when testing for a single multivariate outlier by using the Mahalanobis distance
    Penny, KI
    APPLIED STATISTICS-JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C, 1996, 45 (01): : 73 - 81
  • [25] ON THE DETECTION OF MULTIVARIATE DATA OUTLIERS AND REGRESSION OUTLIERS
    LAZRAQ, A
    CLEROUX, R
    DATA ANALYSIS, LEARNING SYMBOLIC AND NUMERIC KNOWLEDGE, 1989, : 133 - 140
  • [27] High-level Fusion Coupled with Mahalanobis Distance Weighted (MDW) Method for Multivariate Calibration
    Li, Qianqian
    Wu, Zhisheng
    Lin, Ling
    Zeng, Jingqi
    Zhang, Jixiong
    Yan, Hong
    Min, Shungeng
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [28] A k-means procedure based on a Mahalanobis type distance for clustering multivariate functional data
    Martino, Andrea
    Ghiglietti, Andrea
    Ieva, Francesca
    Paganoni, Anna Maria
    STATISTICAL METHODS AND APPLICATIONS, 2019, 28 (02): : 301 - 322
  • [29] A k-means procedure based on a Mahalanobis type distance for clustering multivariate functional data
    Andrea Martino
    Andrea Ghiglietti
    Francesca Ieva
    Anna Maria Paganoni
    Statistical Methods & Applications, 2019, 28 : 301 - 322
  • [30] Graphical modelling and the Mahalanobis distance
    Bedrick, EJ
    JOURNAL OF APPLIED STATISTICS, 2005, 32 (09) : 959 - 967