Benchmarking pKa prediction methods for Lys115 in acetoacetate decarboxylase

被引:2
|
作者
Liu, Yuli [1 ]
Patel, Anand H. G. [1 ]
Burger, Steven K. [1 ]
Ayers, Paul W. [1 ]
机构
[1] McMaster Univ, Dept Chem & Chem Biol, Hamilton, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Protein pKa; Acetoacetate decarboxylase; Net-event kinetic Monte Carlo; POISSON-BOLTZMANN EQUATION; ACTIVE-SITE; CONFORMATIONAL FLEXIBILITY; ENZYMATIC DECARBOXYLATION; IONIZATION-CONSTANT; IONIZABLE GROUPS; REPORTER GROUP; MONTE-CARLO; PROTEINS; VALUES;
D O I
10.1007/s00894-017-3324-x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Three different pK(a) prediction methods were used to calculate the pK(a) of Lys115 in acetoacetate decarboxylase (AADase): the empirical method PROPKA, the multiconformation continuum electrostatics (MCCE) method, and the molecular dynamics/thermodynamic integration (MD/ TI) method with implicit solvent. As expected, accurate pK(a) prediction of Lys115 depends on the protonation patterns of other ionizable groups, especially the nearby Glu76. However, since the prediction methods do not explicitly sample the protonation patterns of nearby residues, this must be done manually. When Glu76 is deprotonated, all three methods give an incorrect pK(a) value for Lys115. If protonated, Glu76 is used in an MD/TI calculation, the pK(a) of Lys115 is predicted to be 5.3, which agrees well with the experimental value of 5.9. This result agrees with previous site-directed mutagenesis studies, where the mutation of Glu76 (negative charge when deprotonated) to Gln (neutral) causes no change in K-m, suggesting that Glu76 has no effect on the pK(a) shift of Lys115. Thus, we postulate that the pK(a) of Glu76 is also shifted so that Glu76 is protonated (neutral) in AADase.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Prediction of pKa Using Machine Learning Methods with Rooted Topological Torsion Fingerprints: Application to Aliphatic Amines
    Lu, Yipin
    Anand, Shankara
    Shirley, William
    Gedeck, Peter
    Kelley, Brian P.
    Skolnik, Suzanne
    Rodde, Stephane
    Mai Nguyen
    Lindvall, Mika
    Jia, Weiping
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (11) : 4706 - 4719
  • [42] Theoretical Prediction of pKa Values of Seleninic, Selenenic, Sulfinic, and Carboxylic Acids by Quantum-Chemical Methods
    Ali, S. Tahir
    Karamat, Sajjad
    Kona, Juraj
    Fabian, Walter M. F.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (47): : 12470 - 12478
  • [43] Integrated Quantum Mechanical and Machine Learning Methods Enable Scalable and General pKa Prediction for Pharmacokinetic Modeling
    Walden, Daniel M.
    Bundey, Yogesh
    Brunk, Nicholas E.
    Khotimehenko, Maksim
    Hou, Hypatia
    Chakravarty, Kaushik
    Hixon, Mark S.
    Varshney, Jyotika
    FASEB JOURNAL, 2022, 36
  • [44] Benchmarking of capacitor power loss calculation methods for wear-out failure prediction in PV inverters
    Lenz, Joao M.
    Cupertino, Allan F.
    Pereira, Heverton A.
    Zhou, Dao
    Wang, Huai
    Pinheiro, Jose R.
    MICROELECTRONICS RELIABILITY, 2019, 100
  • [45] Benchmarking feature selection methods with different prediction models on large-scale healthcare event data
    Zhang F.
    Luo C.
    Lan C.
    Zhan J.
    BenchCouncil Transactions on Benchmarks, Standards and Evaluations, 2021, 1 (01):
  • [46] Theoretical Prediction of pKa Values for Methacrylic Acid Oligomers Using Combined Quantum Mechanical and Continuum Solvation Methods
    Dong, Haitao
    Du, Hongbo
    Qian, Xianghong
    JOURNAL OF PHYSICAL CHEMISTRY A, 2008, 112 (49): : 12687 - 12694
  • [47] simAIRR: simulation of adaptive immune repertoires with realistic receptor sequence sharing for benchmarking of immune state prediction methods
    Kanduri, Chakravarthi
    Scheffer, Lonneke
    Pavlovic, Milena
    Rand, Knut Dagestad
    Chernigovskaya, Maria
    Pirvandy, Oz
    Yaari, Gur
    Greiff, Victor
    Sandve, Geir K.
    GIGASCIENCE, 2023, 12
  • [48] Benchmarking Travel Time and Demand Prediction Methods Using Large-scale Metro Smart Card Data
    Zimmo I.
    Hörcher D.
    Singh R.
    Graham D.J.
    Periodica Polytechnica Transportation Engineering, 2023, 51 (04): : 357 - 374
  • [49] simAIRR: simulation of adaptive immune repertoires with realistic receptor sequence sharing for benchmarking of immune state prediction methods
    Kanduri, Chakravarthi
    Scheffer, Lonneke
    Pavlovic, Milena
    Rand, Knut Dagestad
    Chernigovskaya, Maria
    Pirvandy, Oz
    Yaari, Gur
    Greiff, Victor
    Sandve, Geir K.
    GIGASCIENCE, 2023, 12
  • [50] Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution
    Bin Li
    Wen Zhang
    Chuang Guo
    Hao Xu
    Longfei Li
    Minghao Fang
    Yinlei Hu
    Xinye Zhang
    Xinfeng Yao
    Meifang Tang
    Ke Liu
    Xuetong Zhao
    Jun Lin
    Linzhao Cheng
    Falai Chen
    Tian Xue
    Kun Qu
    Nature Methods, 2022, 19 : 662 - 670