DEPTH ENHANCEMENT USING RGB-D GUIDED FILTERING

被引:0
|
作者
Hui, Tak-Wai [1 ]
Ngan, King Ngi [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
关键词
Depth enhancement; guided image filtering; hole filling; linear regression;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Depth maps from low-cost RGB-D system are generally noisy and not accurate enough. Holes often exist in the depth maps. Bilateral filter is commonly utilized to perform depth enhancement. However, it requires high computational time. Its texture transferring property also makes those boundaries between textured and homogeneous regions in the filtered depth map far from satisfactory. In this paper, we present a method to filter raw depth maps using a RGB-D guided filtering in a two-stage framework. Our method not only has a faster computational time than bilateral filter but also avoids the problem of over-texture transfer. We also use RGB-D frames to fill holes in the depth maps. This can effectively prevents depth bleeding artifacts.
引用
收藏
页码:3832 / 3836
页数:5
相关论文
共 50 条
  • [41] Learning to Weight Color and Depth for RGB-D Visual Search
    Petrelli, Alioscia
    Di Stefano, Luigi
    [J]. IMAGE ANALYSIS AND PROCESSING,(ICIAP 2017), PT I, 2017, 10484 : 648 - 659
  • [42] DEPTH-ADAPTIVE SUPERVOXELS FOR RGB-D VIDEO SEGMENTATION
    Weikersdorfer, David
    Schick, Alexander
    Cremers, Daniel
    [J]. 2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 2708 - 2712
  • [43] BRAND: A Robust Appearance and Depth Descriptor for RGB-D Images
    Nascimento, Erickson R.
    Oliveira, Gabriel L.
    Campos, Mario F. M.
    Vieira, Antonio W.
    Schwartz, William Robson
    [J]. 2012 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2012, : 1720 - 1726
  • [44] Fast Depth Video Compression for Mobile RGB-D Sensors
    Wang, Xiaoqin
    Sekercioglu, Yasar Ahmet
    Drummond, Tom
    Natalizio, Enrico
    Fantoni, Isabelle
    Fremont, Vincent
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2016, 26 (04) : 673 - 686
  • [45] A New Fall Detection Algorithm based on Depth Information using RGB-D Camera
    Sun, Chi-Chia
    Sheu, Ming-Hwa
    Syu, Yu-Cheng
    [J]. 2017 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ISPACS 2017), 2017, : 413 - 416
  • [46] OBJECT CLASSIFICATION FROM RGB-D IMAGES USING DEPTH CONTEXT KERNEL DESCRIPTORS
    Pan, Hong
    Olsen, Soren Ingvor
    Zhu, Yaping
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 512 - 516
  • [47] Surface Reconstruction for RGB-D Data using Real-Time Depth Propagation
    Varadarajan, Karthik Mahesh
    Vincze, Markus
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCV WORKSHOPS), 2011,
  • [48] Learning Occluded Branch Depth Maps in Forest Environments Using RGB-D Images
    Geckeler, Christian
    Aucone, Emanuele
    Schnider, Yannick
    Simeon, Andri
    von Bassewitz, Jan-Philipp
    Zhu, Yunying
    Mintchev, Stefano
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (03) : 2439 - 2446
  • [49] RGB-D IBR: Rendering Indoor Scenes Using Sparse RGB-D Images with Local Alignments
    Jeong, Yeongyu
    Kim, Haejoon
    Seo, Hyewon
    Cordier, Frederic
    Lee, Seungyong
    [J]. PROCEEDINGS I3D 2016: 20TH ACM SIGGRAPH SYMPOSIUM ON INTERACTIVE 3D GRAPHICS AND GAMES, 2016, : 205 - 206
  • [50] SUN RGB-D: A RGB-D Scene Understanding Benchmark Suite
    Song, Shuran
    Lichtenberg, Samuel P.
    Xiao, Jianxiong
    [J]. 2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 567 - 576