Quenching for a reaction-diffusion system with logarithmic singularity

被引:12
|
作者
Mu, Chunlai [1 ]
Zhou, Shouming [1 ]
Liu, Dengming [1 ]
机构
[1] Chongqing Univ, Coll Math & Phys, Chongqing 400044, Peoples R China
关键词
Reaction-diffusion system; Quenching; Non-simultaneous quenching; Quenching rate; HEAT-EQUATIONS;
D O I
10.1016/j.na.2009.04.055
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the quenching phenomenon for a reaction-diffusion system with singular logarithmic source terms and positive Dirichlet boundary conditions. Some sufficient conditions for quenching of the solutions in finite time are obtained, and the blow-up of time-derivatives at the quenching point is verified. Furthermore, under appropriate hypotheses, the non-simultaneous quenching of the system is proved, and the estimates of quenching rate is given. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5599 / 5605
页数:7
相关论文
共 50 条
  • [31] Pacemakers in a Reaction-Diffusion Mechanics System
    R. H. Keldermann
    M. P. Nash
    A. V. Panfilov
    Journal of Statistical Physics, 2007, 128 : 375 - 392
  • [32] Sierpinski gasket in a reaction-diffusion system
    Hayase, Y
    Ohta, T
    PHYSICAL REVIEW LETTERS, 1998, 81 (08) : 1726 - 1729
  • [33] DISSIPATIVE STRUCTURES IN A REACTION-DIFFUSION SYSTEM
    KIM, SH
    YEO, SC
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 1990, 7 (03) : 188 - 197
  • [35] Geographic tongue as a reaction-diffusion system
    McGuire, Margaret K.
    Fuller, Chase A.
    Lindner, John F.
    Manz, Niklas
    CHAOS, 2021, 31 (03)
  • [36] On the dynamics of a discrete reaction-diffusion system
    Azmy, Y.Y.
    Protopopescu, V.
    Numerical Methods for Partial Differential Equations, 1991, 7 (04) : 385 - 405
  • [37] A STEFAN PROBLEM FOR A REACTION-DIFFUSION SYSTEM
    FRIEDMAN, A
    ROSS, DS
    ZHANG, JH
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1995, 26 (05) : 1089 - 1112
  • [38] Spiral instabilities in a reaction-diffusion system
    Zhou, LQ
    Ouyang, Q
    JOURNAL OF PHYSICAL CHEMISTRY A, 2001, 105 (01): : 112 - 118
  • [39] DYNAMICS OF A COUPLED REACTION-DIFFUSION SYSTEM
    ETLICHER, B
    WILHELMSSON, H
    PHYSICA SCRIPTA, 1990, 42 (01): : 81 - 84
  • [40] Breathing spots in a reaction-diffusion system
    Haim, D
    Li, G
    Ouyang, Q
    McCormick, WD
    Swinney, HL
    Hagberg, A
    Meron, E
    PHYSICAL REVIEW LETTERS, 1996, 77 (01) : 190 - 193