Integration of ordinary differential equations via nonlocal symmetries (vol 30, pg 267, 2002)

被引:0
|
作者
Adam, AA
Mahomed, FM
机构
关键词
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
引用
收藏
页码:419 / 419
页数:1
相关论文
共 50 条
  • [41] Nonlocal Symmetries and Generation of Solutions for Partial Differential Equations
    Tychynin, Valentyn
    Petrova, Olga
    Tertyshnyk, Olesya
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2007, 3
  • [42] FRACTIONAL DIFFERENTIAL EQUATIONS: CHANGE OF VARIABLES AND NONLOCAL SYMMETRIES
    Gazizov, R. K.
    Kasatkin, A. A.
    Lukashchuk, S. Yu.
    UFA MATHEMATICAL JOURNAL, 2012, 4 (04): : 54 - 67
  • [43] Symmetries and Reductions of Integrable Nonlocal Partial Differential Equations
    Peng, Linyu
    SYMMETRY-BASEL, 2019, 11 (07):
  • [44] On the existence of nonlocal integral manifolds of ordinary differential equations
    Koksch, N
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 39 (07) : 861 - 880
  • [46] ON NONCLASSICAL IMPULSIVE ORDINARY DIFFERENTIAL EQUATIONS WITH NONLOCAL CONDITIONS
    Bishop, S. A.
    Agarana, M. C.
    Oghonyon, J. G.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2019, 17 (01): : 26 - 32
  • [47] INTEGRATION OF 2ND-ORDER ORDINARY DIFFERENTIAL-EQUATIONS NOT POSSESSING LIE POINT SYMMETRIES
    ABRAHAMSHRAUNER, B
    GOVINDER, KS
    LEACH, PGL
    PHYSICS LETTERS A, 1995, 203 (04) : 169 - 174
  • [48] Quantum Algorithms for Solving Ordinary Differential Equations via Classical Integration Methods
    Zanger, Benjamin
    Mendl, Christian B.
    Schulz, Martin
    Schreiber, Martin
    QUANTUM, 2021, 5
  • [49] Integration via modification: A method of reduction of order for systems of ordinary differential equations
    Gordoa, PR
    Pickering, A
    Prada, J
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2006, 42 (01) : 9 - 26
  • [50] Quantum Algorithms for Solving Ordinary Differential Equations via Classical Integration Methods
    Zanger, Benjamin
    Mendl, Christian B.
    Schulz, Martin
    Schreiber, Martin
    QUANTUM, 2021, 5