Algorithm for the Atmospheric Correction of Shortwave Channels of the MSU-MR Radiometer of the Meteor-M No. 2 Satellite

被引:4
|
作者
Kuchma, M. O. [1 ]
Bloshchinskiy, V. D. [1 ]
机构
[1] State Res Ctr Space Hydrometeorol Planeta, Far Eastern Ctr, Khabarovsk, Russia
关键词
remote sensing; atmospheric correction; lookup table; MSU-MR; radiance; reflectance; radiation transfer model; 6S; RADIATIVE-TRANSFER; AEROSOL; LAND;
D O I
10.1134/S0001433820090145
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The problem of atmospheric correction for shortwave channels of a multispectral low-resolution scanning radiometer onboard the Meteor-M No. 2 satellite is considered. The existing atmospheric correction algorithms are analyzed. An atmospheric correction algorithm is developed based on special lookup tables (LUTs) generated by the authors. The LUTs contain information about the reflectance of the radiometer channels for different atmospheric conditions and observation geometry. The results of atmospheric correction have been validated for the first channel of the radiometer. The validation showed a high correlation with the reference reflectance taken from the Surface Albedo Validation Sites EUMETSAT portal. The algorithm has been additionally validated with the data from the first channel of the AVHRR radiometer onboard the MetOp-A satellite. The correlation between the reference values and the results of atmospheric correction are comparable for both radiometers.
引用
收藏
页码:909 / 915
页数:7
相关论文
共 25 条
  • [21] Determination of the Total Ozone Content in Cloudy Conditions based on Data from the IKFS-2 Spectrometer onboard the Meteor-M no. 2 Satellite
    Garkusha, A. S.
    Polyakov, A. V.
    Timofeev, Yu. M.
    Virolainen, Ya. A.
    Kukharsky, A. V.
    IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2018, 54 (09) : 1244 - 1248
  • [22] Determination of the Total Ozone Content in Cloudy Conditions based on Data from the IKFS-2 Spectrometer onboard the Meteor-M no. 2 Satellite
    A. S. Garkusha
    A. V. Polyakov
    Yu. M. Timofeev
    Ya. A. Virolainen
    A. V. Kukharsky
    Izvestiya, Atmospheric and Oceanic Physics, 2018, 54 : 1244 - 1248
  • [23] Retrieval of Total Precipitable Water from Meteor-M No. 2-2 MTVZA-GYa Data Using a Neural Network Algorithm
    A. A. Filei
    A. I. Andreev
    M. O. Kuchma
    A. B. Uspensky
    Russian Meteorology and Hydrology, 2022, 47 : 272 - 280
  • [24] Retrieval of Total Precipitable Water from Meteor-M No. 2-2 MTVZA-GYa Data Using a Neural Network Algorithm
    Filei, A. A.
    Andreev, A., I
    Kuchma, M. O.
    Uspensky, A. B.
    RUSSIAN METEOROLOGY AND HYDROLOGY, 2022, 47 (04) : 272 - 280
  • [25] NEW RUSSIAN METEOROLOGICAL SATELLITE METEOR-M N 2: SENSING OF THE SUBSURFACE, SURFACE AND ATMOSPHERIC CHARACTERISTICS BY MTVZA-GY MICROWAVE IMAGER/SOUNDER
    Barsukov, Igor
    Cherniavsky, Grigory
    Cherny, Igor
    Mitnik, Leonid
    Kuleshov, Vladimir
    Mitnik, Maia
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5528 - 5531