Sustainable Cross-Laminated Timber Structures in a Seismic Area: Overview and Future Trends

被引:30
|
作者
Sandoli, Antonio [1 ]
D'Ambra, Claudio [1 ]
Ceraldi, Carla [1 ]
Calderoni, Bruno [1 ]
Prota, Andrea [1 ]
机构
[1] Univ Naples Federico II, Dept Struct Engn & Architecture, Via Claudio 21, I-80125 Naples, Italy
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 05期
关键词
CLT buildings; sustainability; environment; seismic behavior; traditional connections; low-damage connections;
D O I
10.3390/app11052078
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Cross-laminated timber (CLT) buildings are recognized as a robust alternative to heavyweight constructions, because beneficial for seismic resistance and environmental sustainability, more than other construction materials. The lightness of material and the satisfactory dissipative response of the mechanical connections provide an excellent seismic response to multi-story CLT buildings, in spite of permanent damage to timber panels in the connection zones. Basically, CLT constructions are highly sustainable structures from extraction of raw material, to manufacturing process, up to usage, disposal and recycling. With respect to other constructions, the potential of CLT buildings is that their environmental sustainability in the phases of disposal and/or recycling can be further enhanced if the seismic damage in structural timber components is reduced or nullified. This paper reports a state-of-the art overview on seismic performance and sustainability aspects of CLT buildings in seismic prone regions. Technological issues and modelling approaches for traditional CLT buildings currently proposed in literature are discussed, focusing the attention on some research advancements and future trends devoted to enhance seismic performance and environmental sustainability of CLT buildings in seismic prone regions.
引用
收藏
页码:1 / 24
页数:23
相关论文
共 50 条
  • [31] Cross-Laminated Timber in the USA: Opportunity for Hardwoods?
    Omar Espinoza
    Urs Buehlmann
    Current Forestry Reports, 2018, 4 : 1 - 12
  • [32] Cross-laminated timber: driving forces and innovation
    Falk, A.
    STRUCTURES AND ARCHITECTURE: CONCEPTS: APPLICATIONS AND CHALLENGES, 2013, : 511 - 518
  • [33] Improved fire performance of cross-laminated timber
    Dagenais, Christian
    Ranger, Lindsay
    Benichou, Noureddine
    Su, Joseph
    World Conference on Timber Engineering 2021, WCTE 2021, 2021,
  • [34] Cross-Laminated Timber in the USA: Opportunity for Hardwoods?
    Espinoza, Omar
    Buehlmann, Urs
    CURRENT FORESTRY REPORTS, 2018, 4 (01): : 1 - 12
  • [35] Outlook for Cross-Laminated Timber in the United States
    Mallo, Maria Fernanda Laguarda
    Espinoza, Omar
    BIORESOURCES, 2014, 9 (04): : 7427 - 7443
  • [36] Analysis and Design of Cross-Laminated Timber Mats
    Mahamid, Mustafa
    Torra-Bilal, Ines
    PRACTICE PERIODICAL ON STRUCTURAL DESIGN AND CONSTRUCTION, 2019, 24 (01)
  • [37] Complete Circularity in Cross-Laminated Timber Production
    Vamza, Ilze
    Valters, Karlis
    Luksta, Ilze
    Resnais, Peteris
    Blumberga, Dagnija
    ENVIRONMENTAL AND CLIMATE TECHNOLOGIES, 2021, 25 (01) : 1101 - 1113
  • [38] Seismic Performance Factors for Cross-Laminated Timber Shear Wall Systems in the United States
    van de Lindt, John W.
    Amini, M. Omar
    Rammer, Douglas
    Line, Philip
    Pei, Shiling
    Popovski, Marjan
    JOURNAL OF STRUCTURAL ENGINEERING, 2020, 146 (09)
  • [39] Seismic shear and acceleration demands in multi-storey cross-laminated timber buildings
    Demirci, Cagatay
    Malaga-Chuquitaype, Christian
    Macorini, Lorenzo
    ENGINEERING STRUCTURES, 2019, 198
  • [40] Seismic Response of Post-Tensioned Cross-Laminated Timber Rocking Wall Buildings
    Wilson, Alex W.
    Motter, Christopher J.
    Phillips, Adam R.
    Dolan, J. Daniel
    JOURNAL OF STRUCTURAL ENGINEERING, 2020, 146 (07)