Best bases Bayesian hierarchical classifier for hyperspectral data analysis

被引:0
|
作者
Morgan, JT [1 ]
Henneguelle, A [1 ]
Crawford, MM [1 ]
Ghosh, J [1 ]
Neuenschwander, A [1 ]
机构
[1] Univ Texas, Ctr Space Res, Austin, TX 78712 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Classification of hyperspectral data is challenging because of high dimensionality inputs coupled with possible high dimensional outputs and scarcity of labeled information. Previously, a multiclassifier system was formulated in a binary hierarchical framework to group classes for accurate, rapid discrimination. In order to improve performance for small sample sizes, a new approach was developed that utilizes a feature reduction scheme which adaptively adjusts to the amount of labeled data available, while exploiting the fact that certain adjacent hyperspectral bands are highly correlated. The resulting best-basis binary hierarchical classifier (BB-BHC) family is thus able to address the "small sample size" problem, as evidenced by experimental results obtained from analysis of AVIRIS and Hyperion data acquired over Kennedy Space Center.
引用
收藏
页码:1434 / 1437
页数:4
相关论文
共 50 条
  • [41] Analysis of household data on influenza epidemic with Bayesian hierarchical model
    Hsu, C. Y.
    Yen, A. M. F.
    Chen, L. S.
    Chen, H. H.
    MATHEMATICAL BIOSCIENCES, 2015, 261 : 13 - 26
  • [42] Bayesian hierarchical nonlinear models for analysis of pharmacogenomic cytotoxicity data
    Fridley, B. L.
    Schaid, D.
    Weinshilboum, R.
    Wang, L.
    GENETIC EPIDEMIOLOGY, 2007, 31 (06) : 626 - 627
  • [43] Multilevel Bayesian networks for the analysis of hierarchical health care data
    Lappenschaar, Martijn
    Hommersom, Arjen
    Lucas, Peter J. F.
    Lagro, Joep
    Visscher, Stefan
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2013, 57 (03) : 171 - 183
  • [44] Bayesian hierarchical error model for analysis of gene expression data
    Cho, H
    Lee, JK
    BIOINFORMATICS, 2004, 20 (13) : 2016 - 2025
  • [45] THE BEST SORTS FOR DATA-BASES
    MILLER, CA
    PERSONAL COMPUTING, 1984, 8 (09): : 129 - &
  • [46] UPDATE IN HIERARCHICAL DATA-BASES
    IOFINOVA, ME
    KOMISSARTSCHIK, EA
    LECTURE NOTES IN COMPUTER SCIENCE, 1988, 326 : 292 - 306
  • [47] A Novel Hierarchical Bayesian Approach for Sparse Semisupervised Hyperspectral Unmixing
    Themelis, Konstantinos E.
    Rontogiannis, Athanasios A.
    Koutroumbas, Konstantinos D.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (02) : 585 - 599
  • [48] Spectral unmixing of hyperspectral images using a hierarchical Bayesian model
    Dobigeon, Nicolas
    Tourneret, Jean-Yves
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PTS 1-3, PROCEEDINGS, 2007, : 1209 - +
  • [49] An AdaBoost Ensemble Classifier System for Classifying Hyperspectral Data
    Ramzi, Pouria
    Samadzadegan, Farhad
    Reinartz, Peter
    PHOTOGRAMMETRIE FERNERKUNDUNG GEOINFORMATION, 2014, (01): : 27 - 39
  • [50] Fusion of Hyperspectral and LiDAR Data With a Novel Ensemble Classifier
    Xia, Junshi
    Yokoya, Naoto
    Iwasaki, Akira
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (06) : 957 - 961