Best bases Bayesian hierarchical classifier for hyperspectral data analysis

被引:0
|
作者
Morgan, JT [1 ]
Henneguelle, A [1 ]
Crawford, MM [1 ]
Ghosh, J [1 ]
Neuenschwander, A [1 ]
机构
[1] Univ Texas, Ctr Space Res, Austin, TX 78712 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Classification of hyperspectral data is challenging because of high dimensionality inputs coupled with possible high dimensional outputs and scarcity of labeled information. Previously, a multiclassifier system was formulated in a binary hierarchical framework to group classes for accurate, rapid discrimination. In order to improve performance for small sample sizes, a new approach was developed that utilizes a feature reduction scheme which adaptively adjusts to the amount of labeled data available, while exploiting the fact that certain adjacent hyperspectral bands are highly correlated. The resulting best-basis binary hierarchical classifier (BB-BHC) family is thus able to address the "small sample size" problem, as evidenced by experimental results obtained from analysis of AVIRIS and Hyperion data acquired over Kennedy Space Center.
引用
收藏
页码:1434 / 1437
页数:4
相关论文
共 50 条
  • [1] Adaptive feature selection for hyperspectral data analysis using a Binary Hierarchical Classifier and Tabu Search
    Korycinski, D
    Crawford, M
    Barnes, JW
    Ghosh, J
    IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 297 - 299
  • [2] Best-bases feature extraction algorithms for classification of hyperspectral data
    Kumar, S
    Ghosh, J
    Crawford, MM
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (07): : 1368 - 1379
  • [3] Bayesian Network Classifier for Medical Data Analysis
    Reiz, Beata
    Csato, Lehel
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2009, 4 (01) : 65 - 72
  • [4] Bayesian-hierarchical SAR classifier
    Kouskoulas, Y
    Ulaby, FT
    Pierce, L
    IGARSS 2001: SCANNING THE PRESENT AND RESOLVING THE FUTURE, VOLS 1-7, PROCEEDINGS, 2001, : 193 - 195
  • [5] Toward an optimal supervised classifier for the analysis of hyperspectral data
    Dundar, MM
    Landgrebe, DA
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (01): : 271 - 277
  • [6] Probability of misclassification in Bayesian hierarchical classifier
    Burduk, R
    Intelligent Information Processing and Web Mining, Proceedings, 2005, : 341 - 348
  • [7] Bayesian hierarchical analysis of minefield data
    Cressie, N
    Lawson, AB
    DETECTION AND REMEDIATION TECHNOLOGIES FOR MINES AND MINELIKE TARGETS III, PTS 1 AND 2, 1998, 3392 : 930 - 940
  • [8] Hierarchical Bayesian fatigue data analysis
    Liu, Xiao-Wei
    Lu, Da-Gang
    Hoogenboom, Pierre C. J.
    INTERNATIONAL JOURNAL OF FATIGUE, 2017, 100 : 418 - 428
  • [9] Hybrid Hierarchical Classifiers for Hyperspectral Data Analysis
    Jun, Goo
    Ghosh, Joydeep
    MULTIPLE CLASSIFIER SYSTEMS, PROCEEDINGS, 2009, 5519 : 42 - 51
  • [10] A hierarchical multiclassifier system for hyperspectral data analysis
    Kumar, S
    Ghosh, J
    Crawford, M
    MULTIPLE CLASSIFIER SYSTEMS, 2000, 1857 : 270 - 279