Exactly solvable models of interacting spin-s particles in one dimension

被引:3
|
作者
Melo, C. S. [1 ]
Martins, M. J. [1 ]
机构
[1] Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Carlos, SP, Brazil
关键词
D O I
10.1088/1751-8113/40/4/F03
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the eigenspectrum solution of a many-body problem of interacting spin-s particles that can be solvable within the generalized Be the ansatz method. We assume that the interactions are encoded in terms of an arbitrary U(1) invariant factorizable S-matrix. The exact solution of the spin part is based on a unified formulation of the quantum inverse scattering method for an arbitrary (2s + 1)-dimensional monodromy matrix. The respective eigenstates are shown to be given in terms of 2s creation fields by a general new recurrence relation. This allows us to derive the spectrum and the respective Be the ansatz equations.
引用
收藏
页码:F127 / F133
页数:7
相关论文
共 50 条
  • [21] An exactly solvable quench protocol for integrable spin models
    Das, Diptarka
    Das, Sumit R.
    Galante, Damian A.
    Myers, Robert C.
    Sengupta, Krishnendu
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2017, (11):
  • [22] An exactly solvable many-body problem in one dimension
    Khare, A
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2000, 14 (19-20): : 2101 - 2108
  • [23] An exactly solvable quench protocol for integrable spin models
    Diptarka Das
    Sumit R. Das
    Damián A. Galante
    Robert C. Myers
    Krishnendu Sengupta
    [J]. Journal of High Energy Physics, 2017
  • [24] Reflection equations and exactly solvable lattice spin models
    Behrend, RE
    Pearce, PA
    [J]. CZECHOSLOVAK JOURNAL OF PHYSICS, 1996, 46 (12) : 1179 - 1187
  • [25] EXACTLY SOLVABLE SPIN MODELS FOR QUASI-CRYSTALS
    KOREPIN, VE
    [J]. ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1987, 92 (03): : 1082 - 1089
  • [26] New exactly and conditionally exactly solvable N-body problems in one dimension
    Gurappa, N
    Kumar, CN
    Panigrahi, PK
    [J]. MODERN PHYSICS LETTERS A, 1996, 11 (21) : 1737 - 1744
  • [27] Exactly solvable model of three interacting particles in an external magnetic field
    Nakhmedov, EP
    Morawetz, K
    Ameduri, M
    Yurtsever, A
    Radehaus, C
    [J]. PHYSICAL REVIEW B, 2003, 67 (20):
  • [28] EXACTLY SOLVABLE ONE-DIMENSIONAL INHOMOGENEOUS MODELS
    DERRIDA, B
    FRANCE, MM
    PEYRIERE, J
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1986, 45 (3-4) : 439 - 449
  • [29] An exactly solvable Kondo problem for interacting one-dimensional fermions
    Wang, YP
    Voit, J
    [J]. PHYSICAL REVIEW LETTERS, 1996, 77 (24) : 4934 - 4937
  • [30] GRAPHS AND AN EXACTLY SOLVABLE N-BODY PROBLEM IN ONE DIMENSION
    BARUCCHI, G
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1980, 58 (04): : 302 - 312