A circle-preserving C2 Hermite interpolatory subdivision scheme with tension control

被引:24
|
作者
Romani, L. [1 ]
机构
[1] Univ Milano Bicocca, Dept Math & Applicat, I-20125 Milan, Italy
关键词
Rational interpolation; Hermite subdivision; Curve fitting; Circle-preserving; Tension control;
D O I
10.1016/j.cagd.2009.08.006
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
we present a tension-controlled 2-point Hermite interpolatory subdivision scheme mat is capable of reproducing circles starting from a sequence of sample points with any arbitrary spacing and appropriately chosen first and second derivatives. Whenever the tension parameter is set equal to 1, the limit curve coincides with the rational quintic Hermite interpolant to the given data and has guaranteed C-2 continuity, while for other positive tension values, continuity of curvature is conjectured and empirically shown by a wide range of experiments. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:36 / 47
页数:12
相关论文
共 50 条
  • [1] A non-linear circle-preserving subdivision scheme
    Chalmoviansky, Pavel
    Juettler, Bert
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2007, 27 (04) : 375 - 400
  • [2] A non-linear circle-preserving subdivision scheme
    Pavel Chalmovianský
    Bert Jüttler
    [J]. Advances in Computational Mathematics, 2007, 27 : 375 - 400
  • [3] Shape preserving rational [3/2] Hermite interpolatory subdivision scheme
    Bebarta, Shubhashree
    Jena, Mahendra Kumar
    [J]. CALCOLO, 2023, 60 (01)
  • [4] Shape preserving rational [3/2] Hermite interpolatory subdivision scheme
    Shubhashree Bebarta
    Mahendra Kumar Jena
    [J]. Calcolo, 2023, 60
  • [5] Convergence analysis of C2 Hermite interpolatory subdivision schemes by explicit joint spectral radius formulas
    Guglielmi, Nicola
    Manni, Carla
    Vitale, Davide
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (04) : 884 - 902
  • [6] C2 Hermite interpolants obtained by subdivision
    Merrien, JL
    [J]. RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1999, 33 (01): : 55 - 65
  • [7] A Hermite interpolatory subdivision scheme for C2-quintics on the Powell-Sabin 12-split
    Lyche, Tom
    Muntingh, Georg
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2014, 31 (7-8) : 464 - 474
  • [8] A point-normal interpolatory subdivision scheme preserving conics
    Bugel, Niels
    Romani, Lucia
    Kosinka, Jiri
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2024, 111
  • [9] On Shape Preserving C2 Hermite Interpolation
    Carla Manni
    [J]. BIT Numerical Mathematics, 2001, 41 : 127 - 148
  • [10] On shape preserving C2 Hermite interpolation
    Manni, C
    [J]. BIT NUMERICAL MATHEMATICS, 2001, 41 (01) : 127 - 148