On shape preserving C2 Hermite interpolation

被引:28
|
作者
Manni, C [1 ]
机构
[1] Univ Turin, Dipartimento Matemat, IT-10123 Turin, Italy
关键词
interpolation; shape preserving; parametric curves;
D O I
10.1023/A:1021921902509
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose a general parametric local approach for functional C(2) Hermite shape preserving interpolation. The constructed interpolant is a parametric curve which interpolates values, first and second derivatives of a given function and reproduces the behavior of the data. The method is detailed for parametric curves with piecewise cubic components. For the selected space necessary and sufficient conditions are derived to ensure the convexity of the constructed interpolant. Monotonicity is also studied. The approximation order is investigated for both cases. The use of a parametric curve to interpolate data from a function can be considered a disadvantage of the scheme. However, the simple structure of the used curves greatly reduces such a disadvantage.
引用
收藏
页码:127 / 148
页数:22
相关论文
共 50 条
  • [1] On Shape Preserving C2 Hermite Interpolation
    Carla Manni
    [J]. BIT Numerical Mathematics, 2001, 41 : 127 - 148
  • [2] Shape preserving C2 spline interpolation
    Kvasov, BI
    [J]. PROCEEDINGS OF THE SECOND ASIAN MATHEMATICAL CONFERENCE 1995, 1998, : 430 - 438
  • [3] Piecewise C-1-shape-preserving Hermite interpolation
    Conti, C
    Morandi, R
    [J]. COMPUTING, 1996, 56 (04) : 323 - 341
  • [4] Hermite interpolation on algebraic curves in C2
    Phung Van Manh
    Nguyen Van Minh
    Phan Thi Huong
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2019, 30 (05): : 874 - 890
  • [5] Shape preserving C2 rational quartic interpolation spline with two parameters
    Zhu, Yuanpeng
    Han, Xuli
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (10) : 2160 - 2177
  • [6] Shape-Preserving C2 Functional Interpolation via Parametric Cubics
    P. Lamberti
    C. Manni
    [J]. Numerical Algorithms, 2001, 28 : 229 - 254
  • [7] Shape-preserving C2 functional interpolation via parametric cubics
    Lamberti, P
    Manni, C
    [J]. NUMERICAL ALGORITHMS, 2001, 28 (1-4) : 229 - 254
  • [8] C2 rational quartic interpolation spline with local shape preserving property
    Zhu, Yuanpeng
    Han, Xuli
    [J]. APPLIED MATHEMATICS LETTERS, 2015, 46 : 57 - 63
  • [9] Dyadic C2 hermite interpolation on a square mesh
    Dubuc, S
    Han, B
    Merrien, JL
    Mo, Q
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2005, 22 (08) : 727 - 752
  • [10] Shape Preserving Hermite Interpolation by Rational Biquadratic Splines
    Sablonniere, Paul
    [J]. MATHEMATICAL METHODS FOR CURVES AND SURFACES, 2010, 5862 : 370 - 384