PEG-based nanocomposite hydrogel: Thermoresponsive sol-gel transition controlled by PLGA-PEG-PLGA molecular weight and solute concentration

被引:51
|
作者
Miyazaki, Makoto [1 ]
Maeda, Tomoki [1 ]
Hirashima, Kenji [1 ]
Kurokawa, Naruki [1 ]
Nagahama, Koji [2 ]
Hotta, Atsushi [1 ]
机构
[1] Keio Univ, Dept Mech Engn, Kohoku Ku, 3-14-1 Hiyoshi, Yokohama, Kanagawa 2238522, Japan
[2] Konan Univ, Dept Nanobiochem Frontiers Innovat Res Sci & Tech, 7-1-20 Minatojima Minamimachi, Kobe, Hyogo 6500047, Japan
基金
日本学术振兴会;
关键词
PLGA-PEG-PLGA; Nanocomposite; Thermoresponsive hydrogel; BLOCK-COPOLYMERS; TRIBLOCK COPOLYMERS; AQUEOUS-SOLUTION; POLY(ETHYLENE GLYCOL); NEUTRON-SCATTERING; DRUG-DELIVERY; GELATION; WATER; LAPONITE; MICROEMULSIONS;
D O I
10.1016/j.polymer.2017.03.016
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A PEG-based copolymer with a high PEG ratio was synthesized and the sol-gel transition temperature (T-gel) around the physiological temperature (25 degrees C-37 degrees C) was achieved. Specifically, we synthesized a triblock PEG copolymer of poly ((D),(L)-lactide-co-glycolide)-b-poly (ethylene glycol)-b-poly ((D),(L-)lactide-co-glycolide) (PLGA-PEG-PLGA) with different molecular weights and a high PEG/PLGA ratio of 0.80. By adding synthetic clay (laponite) to an aqueous solution of the PEG-based copolymer, it was found that the discriminating concentration combinations of the laponite (from 0.75 to 1.5 wt%) and the PLGA-PEG-PLGA (from 2.0 to 5.0 wt%) could effectively regulate the T-gel to fall between 25 degrees C and 37 degrees C (physiological temperature), simultaneously controlling the storage and the loss moduli of the specimens studied by the dynamic mechanical analyses (DMA). The structural analyses were also performed by the cryo-TEM and the high-resolution small angle X-ray scattering (SAXS) measurements at SPring-8, Japan. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:246 / 254
页数:9
相关论文
共 44 条
  • [1] PEG-based nanocomposite hydrogel: Thermo-responsive sol-gel transition and degradation behavior controlled by the LA/GA ratio of PLGA-PEG-PLGA
    Kitagawa, Midori
    Maeda, Tomoki
    Hotta, Atsushi
    [J]. POLYMER DEGRADATION AND STABILITY, 2018, 147 : 222 - 228
  • [2] The effect of PLGA-PEG-PLGA modification on the sol-gel transition and degradation properties
    Oborna, J.
    Mravcova, L.
    Michlovska, L.
    Vojtova, L.
    Vavrova, M.
    [J]. EXPRESS POLYMER LETTERS, 2016, 10 (05): : 361 - 372
  • [3] Effect of PLGA block molecular weight on gelling temperature of PLGA-PEG-PLGA thermoresponsive copolymers
    Steinman, Noam Y.
    Haim-Zada, Moran
    Goldstein, Isaac A.
    Goldberg, Ayelet H.
    Haber, Tom
    Berlin, Jacob M.
    Domb, Abraham J.
    [J]. JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2019, 57 (01) : 35 - 39
  • [4] Synthesis of PEG-PLGA diblock with high PEG/PLGA block ratio for the PEG-PLGA/laponite hydrogels with thermoresponsive sol-gel transitions
    Maeda, Tomoki
    Kitagawa, Midori
    Hotta, Atsushi
    Koizumi, Satoshi
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [5] Effects of precipitate agents on temperature-responsive sol-gel transitions of PLGA-PEG-PLGA copolymers in water
    Yu, Lin
    Zhang, Huan
    Ding, Jiandong
    [J]. COLLOID AND POLYMER SCIENCE, 2010, 288 (10-11) : 1151 - 1159
  • [6] Effect of PLGA block molecular weight on gelling temperature of PLGA-PEG-PLGA thermoresponsive copolymers (vol 57, pg 35, 2019)
    Steinman, Noam Y.
    Haim-Zada, Moran
    Goldstein, Isaac A.
    Goldberg, Ayelet H.
    Haber, Tom
    Berlin, Jacob M.
    Domb, Abraham J.
    [J]. JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2019, 57 (17) : 1847 - 1847
  • [7] Thermogelling Nanocomposite Hydrogel: PLGA Molecular Weight in PLGA-b-PEG-b-PLGA Affecting the Thermogelling Behavior
    Maeda, Tomoki
    Tanimoto, Keishi
    Hotta, Atsushi
    [J]. MACROMOLECULAR CHEMISTRY AND PHYSICS, 2022, 223 (01)
  • [8] Effects of Molecular Weight and Its Distribution of PEG Block on Micellization and Thermogellability of PLGA-PEG-PLGA Copolymer Aqueous Solutions
    Chen, Liang
    Ci, Tianyuan
    Yu, Lin
    Ding, Jiandong
    [J]. MACROMOLECULES, 2015, 48 (11) : 3662 - 3671
  • [9] Sol-gel transition temperature of PLGA-g-PEG aqueous solutions
    Chung, YM
    Simmons, KL
    Gutowska, A
    Jeong, B
    [J]. BIOMACROMOLECULES, 2002, 3 (03) : 511 - 516
  • [10] Degradation of thermoresponsive laponite/PEG-b-PLGA nanocomposite hydrogels controlled by blending PEG-b-PLGA diblock copolymers with different PLGA molecular weights
    Maeda, Tomoki
    Kitagawa, Midori
    Hotta, Atsushi
    [J]. POLYMER DEGRADATION AND STABILITY, 2021, 187