Affine and linear invariant families of harmonic mappings

被引:9
|
作者
Chuaqui, Martin [1 ]
Hernandez, Rodrigo [2 ]
Martin, Maria J. [3 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Matemat, Casilla 306, Santiago, Chile
[2] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Ave Padre Hurtado 750, Vina Del Mar, Chile
[3] Univ Eastern Finland, Dept Math & Phys, POB 111, Joensuu 80101, Finland
基金
芬兰科学院;
关键词
ANALYTISCHER FUNKTIONEN; CONFORMAL-MAPS; SCHWARZIAN; DISTORTION;
D O I
10.1007/s00208-016-1418-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the order of affine and linear invariant families of planar harmonic mappings in the unit disk. By using the famous shear construction of Clunie and Sheil-Small, we construct a function to determine the order of the family of mappings with bounded Schwarzian norm. The result shows that finding the order of the class S-H of univalent harmonic mappings can be formulated as a question about Schwarzian norm and, in particular, our result shows consistency between the conjectured order of S-H and the Schwarzian norm of the harmonic Koebe function.
引用
收藏
页码:1099 / 1122
页数:24
相关论文
共 50 条
  • [1] Affine and linear invariant families of harmonic mappings
    Martin Chuaqui
    Rodrigo Hernández
    María J. Martín
    Mathematische Annalen, 2017, 367 : 1099 - 1122
  • [2] Differential Inequalities in Linear-and Affine-Invariant Families of Harmonic Mappings
    Graf, S. Yu.
    Eyelangoli, O. R.
    RUSSIAN MATHEMATICS, 2010, 54 (10) : 60 - 62
  • [3] Schwarzian derivative, integral means, and the affine and linear invariant families of biharmonic mappings
    Ponnusamy, S.
    Qiao, J.
    Wang, X.
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (12) : 3468 - 3479
  • [4] Characterizations of locally testable linear- and affine-invariant families
    Li, Angsheng
    Pan, Yicheng
    THEORETICAL COMPUTER SCIENCE, 2012, 414 (01) : 55 - 75
  • [5] Nehari-type families of harmonic mappings
    Arbelaez, Hugo
    Chuaqui, Martin
    Sierra, Willy
    MATHEMATISCHE NACHRICHTEN, 2020, 293 (01) : 39 - 51
  • [6] Linear difference equations and invariant subsets of linear mappings
    Tabor J.
    aequationes mathematicae, 1999, 57 (2) : 153 - 184
  • [7] On the linear combinations of harmonic univalent mappings
    Wang, Zhi-Gang
    Liu, Zhi-Hong
    Li, Ying-Chun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 400 (02) : 452 - 459
  • [9] Variability regions for certain families of harmonic univalent mappings
    Ponnusamy, S.
    Yamamoto, H.
    Yanagihara, H.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2013, 58 (01) : 23 - 34
  • [10] BOUNDARY BEHAVIOR AND LINEAR INVARIANT FAMILIES
    CAMPBELL, DM
    PFALTZGRAFF, JA
    JOURNAL D ANALYSE MATHEMATIQUE, 1976, 29 : 67 - 92