Differential Inequalities in Linear-and Affine-Invariant Families of Harmonic Mappings

被引:4
|
作者
Graf, S. Yu. [1 ]
Eyelangoli, O. R. [1 ]
机构
[1] Tver State Univ, Ul Zhelyabova 33, Tver 170000, Russia
关键词
harmonic mappings; linear-and affine-invariant families of functions; order of a family;
D O I
10.3103/S1066369X10100075
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In linear-and affine-invariant families of harmonic mappings of the unit disk we prove some differential inequalities such as the sharp two-sided estimate of the Jacobian and an estimate of the curvature of the image of the circle.
引用
收藏
页码:60 / 62
页数:3
相关论文
共 14 条
  • [1] Affine and linear invariant families of harmonic mappings
    Chuaqui, Martin
    Hernandez, Rodrigo
    Martin, Maria J.
    MATHEMATISCHE ANNALEN, 2017, 367 (3-4) : 1099 - 1122
  • [2] Affine and linear invariant families of harmonic mappings
    Martin Chuaqui
    Rodrigo Hernández
    María J. Martín
    Mathematische Annalen, 2017, 367 : 1099 - 1122
  • [3] Characterizations of locally testable linear- and affine-invariant families
    Li, Angsheng
    Pan, Yicheng
    THEORETICAL COMPUTER SCIENCE, 2012, 414 (01) : 55 - 75
  • [4] Sparse affine-invariant linear codes are locally testable
    Ben-Sasson, Eli
    Ron-Zewi, Noga
    Sudan, Madhu
    2012 IEEE 53RD ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2012, : 561 - 570
  • [5] Sparse affine-invariant linear codes are locally testable
    Eli Ben-Sasson
    Noga Ron-Zewi
    Madhu Sudan
    computational complexity, 2017, 26 : 37 - 77
  • [6] AN AFFINE-INVARIANT INEQUALITY FOR RATIONAL FUNCTIONS AND APPLICATIONS IN HARMONIC ANALYSIS
    Dendrinos, Spyridon
    Folch-Gabayet, Magali
    Wright, James
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2010, 53 : 639 - 655
  • [7] SPARSE AFFINE-INVARIANT LINEAR CODES ARE LOCALLY TESTABLE
    Ben-Sasson, Eli
    Ron-Zewi, Noga
    Sudan, Madhu
    COMPUTATIONAL COMPLEXITY, 2017, 26 (01) : 37 - 77
  • [8] Schwarzian derivative, integral means, and the affine and linear invariant families of biharmonic mappings
    Ponnusamy, S.
    Qiao, J.
    Wang, X.
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (12) : 3468 - 3479
  • [9] Affine-invariant projection methods for conservative integration of differential equations
    Ishii, Naoki
    Sato, Shun
    Matsuo, Takayasu
    JSIAM LETTERS, 2024, 16 : 49 - 52
  • [10] Affine-invariant conditions of topological discrimination of quadratic Hamilton differential systems
    Kalin, YF
    Vulpe, NI
    DIFFERENTIAL EQUATIONS, 1998, 34 (03) : 297 - 301