A study of hypervelocity impact on cryogenic materials

被引:20
|
作者
Ohtani, K. [1 ]
Numata, D.
Kikuchi, T.
Sun, M.
Takayama, K.
Togami, K.
机构
[1] Tohoku Univ, Interdisciplinary Shock Wave Res Lab, Sendai, Miyagi 9808577, Japan
[2] Mitsubishi Heavy Ind Co Ltd, Nagoya Aerosp Syst, Nagoya, Aichi, Japan
关键词
hypervelocity impact; cryogenic temperature; space debris bumper shield; ballistic range;
D O I
10.1016/j.ijimpeng.2006.09.025
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper reports a result of hypervelocity impact experiments on cryogenically cooled aluminum alloys and a composite material. Experiments are carried out on a target palate at 122 K. Aluminum spheres at 1.95 km/s in 50 kPa air were impinged against the target plate at cryogenic temperature and the result was compared with room temperature target plates. Hypervelocity impact (HVI) processes were visualized with shadowgraph arrangement and recorded with highspeed video camera and to ensure the temperature dependence we compared HVI tests with metal target plates with AUTODYN 2D and SPH numerical simulations. We found that cryogenic impacts created slight differences of impact damage from room temperature ones, i.e., the shape and averaged diameters of HVI crater holes were less at cryogenic impacts. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:555 / 565
页数:11
相关论文
共 50 条
  • [31] Numerical study on breakup of DebriSat under hypervelocity impact
    Xiang, Haoyu
    Chen, Xiaowei
    ACTA ASTRONAUTICA, 2024, 217 : 62 - 74
  • [32] Experimental and Numerical Study on the Mesh Bumper by Hypervelocity Impact
    Lin, Min
    Pang, Baojun
    Cheng, Jin
    ADVANCED MATERIALS AND ENGINEERING MATERIALS, PTS 1 AND 2, 2012, 457-458 : 108 - +
  • [33] Hypervelocity impact modelling
    不详
    AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 1997, 69 (04): : 372 - 373
  • [34] FUSION BY HYPERVELOCITY IMPACT
    POZWOLSKI, AE
    LASER AND PARTICLE BEAMS, 1986, 4 : 157 - 166
  • [35] Review of bumper materials for spacecraft shield against orbital debris hypervelocity impact
    Siyuan Ren
    Pinliang Zhang
    Qiang Wu
    Qingming Zhang
    Zizheng Gong
    Guangming Song
    Renrong Long
    Liangfei Gong
    Mingze Wu
    Defence Technology, 2025, 45 (03) : 137 - 177
  • [36] Implementation of Tillotson Equation of State for Hypervelocity Impact of Metals, Geologic Materials, and Liquids
    Brundage, Aaron L.
    PROCEEDINGS OF THE 12TH HYPERVELOCITY IMPACT SYMPOSIUM, 2013, 58 : 461 - 470
  • [37] Hydrocode modelling of hypervelocity impact on brittle materials: depth of penetration and conchoidal diameter
    Taylor, EA
    Tsembelis, K
    Hayhurst, CJ
    Kay, L
    Burchell, MJ
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 1999, 23 (01) : 895 - 904
  • [38] Limits on methane release and generation via hypervelocity impact of Martian analogue materials
    Price, M. C.
    Ramkissoon, N. K.
    McMahon, S.
    Miljkovic, K.
    Parnell, J.
    Wozniakiewicz, P. J.
    Kearsley, A. T.
    Blamey, N. J. F.
    Cole, M. J.
    Burchell, M. J.
    INTERNATIONAL JOURNAL OF ASTROBIOLOGY, 2014, 13 (02) : 132 - 140
  • [39] Hypervelocity impact testing of advanced materials and structures for micrometeoroid and orbital debris shielding
    Ryan, Shannon
    Christiansen, Eric L.
    ACTA ASTRONAUTICA, 2013, 83 : 216 - 231
  • [40] Hypervelocity impact testing of materials for additive construction: Applications on Earth, the Moon, and Mars
    Ordonez, Erick
    Edmunson, Jennifer
    Fiske, Michael
    Christiansen, Eric
    Miller, Joshua
    Davis, Bruce
    Read, Jon
    Johnston, Mallory
    Fikes, John
    14TH HYPERVELOCITY IMPACT SYMPOSIUM (HVIS 2017), 2017, 204 : 390 - 396