Heat conduction in one-dimensional nonintegrable systems

被引:182
|
作者
Hu, BB
Li, BW [1 ]
Zhao, H
机构
[1] Hong Kong Baptist Univ, Dept Phys, Hong Kong, Hong Kong, Peoples R China
[2] Hong Kong Baptist Univ, Ctr Nonlinear Studies, Hong Kong, Hong Kong, Peoples R China
[3] Univ Houston, Dept Phys, Houston, TX 77204 USA
[4] Natl Univ Singapore, Dept Phys, Singapore 119260, Singapore
[5] Lanzhou Univ, Dept Phys, Lanzhou 730000, Peoples R China
来源
PHYSICAL REVIEW E | 2000年 / 61卷 / 04期
关键词
D O I
10.1103/PhysRevE.61.3828
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Two classes of one-dimensional nonintegrable systems represented by the Fermi-Pasta-Ulam (FPU) model and the discrete phi(4) model are studied to seek a generic mechanism of energy transport on a microscopic level sustaining macroscopic behaviors. The results enable us to understand why the class represented by the phi(4) model has a normal thermal conductivity and the class represented by the EPLT model does not even though the temperature gradient can be established.
引用
收藏
页码:3828 / 3831
页数:4
相关论文
共 50 条
  • [31] HEAT-CONDUCTION IN A ONE-DIMENSIONAL RANDOM MEDIUM
    KELLER, JB
    PAPANICOLAOU, GC
    WEILENMANN, J
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1978, 31 (05) : 583 - 592
  • [32] ON ONE-DIMENSIONAL HEAT CONDUCTION WITH AN ARBITRARY HEATING RATE
    SUTTON, GW
    [J]. JOURNAL OF THE AERONAUTICAL SCIENCES, 1957, 24 (11): : 854 - 855
  • [33] Anomalous heat conduction in a one-dimensional ideal gas
    Casati, G
    Prosen, T
    [J]. PHYSICAL REVIEW E, 2003, 67 (01):
  • [34] Anomalous heat conduction in one-dimensional dimerized lattices
    Department of Mathematics and Physics, Nanhua University, Hengyang 421001, China
    不详
    [J]. Chin. Phys. Lett., 2007, 4 (898-901):
  • [35] Heat flux in one-dimensional systems
    Mejia-Monasterio, Carlos
    Politi, Antonio
    Rondoni, Lamberto
    [J]. PHYSICAL REVIEW E, 2019, 100 (03)
  • [36] SOLITON CONDUCTION OF RANDOMLY INHOMOGENEOUS ONE-DIMENSIONAL SYSTEMS
    MALOMED, BA
    [J]. FIZIKA TVERDOGO TELA, 1989, 31 (10): : 256 - 259
  • [37] SIMILARITY SOLUTIONS OF THE EQUATION OF ONE-DIMENSIONAL HEAT-CONDUCTION
    BOUILLET, JE
    DESARAVIA, DA
    VILLA, LT
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1980, 35 (01) : 55 - 65
  • [38] ONE-DIMENSIONAL HEAT CONDUCTION EQUATION OF THE POLAR BEAR HAIR
    Zhu, Wei-Hong
    Pan, Yong-Yan
    Li, Zheng-Biao
    Wang, Qing-Li
    [J]. THERMAL SCIENCE, 2015, 19 : S179 - S181
  • [39] Fractional Heat Conduction in Infinite One-Dimensional Composite Medium
    Povstenko, Y. Z.
    [J]. JOURNAL OF THERMAL STRESSES, 2013, 36 (04) : 351 - 363
  • [40] WHAT IS THE OPTIMAL SHAPE OF A FIN FOR ONE-DIMENSIONAL HEAT CONDUCTION?
    Marck, Gilles
    Nadin, Gregoire
    Privat, Yannick
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2014, 74 (04) : 1194 - 1218