Obtaining parsimonious hydraulic conductivity fields using head and transport observations: A Bayesian geostatistical parameter estimation approach

被引:50
|
作者
Fienen, M. [1 ]
Hunt, R. [1 ]
Krabbenhoft, D. [1 ]
Clemo, T. [2 ]
机构
[1] US Geol Survey, Middleton, WI 53562 USA
[2] Boise State Univ, Ctr Geophys Invest Shallow Subsurface, Boise, ID 83725 USA
基金
美国国家科学基金会;
关键词
SANDY SILICATE AQUIFER; ESTIMATING GROUNDWATER EXCHANGE; NORTHERN WISCONSIN; MINERALOGIC CONTROLS; CHEMICAL EVOLUTION; MODEL CALIBRATION; INVERSE PROBLEM; WATER; CHEMISTRY; LAKES;
D O I
10.1029/2008WR007431
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Flow path delineation is a valuable tool for interpreting the subsurface hydrogeochemical environment. Different types of data, such as groundwater flow and transport, inform different aspects of hydrogeologic parameter values (hydraulic conductivity in this case) which, in turn, determine flow paths. This work combines flow and transport information to estimate a unified set of hydrogeologic parameters using the Bayesian geostatistical inverse approach. Parameter flexibility is allowed by using a highly parameterized approach with the level of complexity informed by the data. Despite the effort to adhere to the ideal of minimal a priori structure imposed on the problem, extreme contrasts in parameters can result in the need to censor correlation across hydrostratigraphic bounding surfaces. These partitions segregate parameters into facies associations. With an iterative approach in which partitions are based on inspection of initial estimates, flow path interpretation is progressively refined through the inclusion of more types of data. Head observations, stable oxygen isotopes (O-18/O-16 ratios), and tritium are all used to progressively refine flow path delineation on an isthmus between two lakes in the Trout Lake watershed, northern Wisconsin, United States. Despite allowing significant parameter freedom by estimating many distributed parameter values, a smooth field is obtained.
引用
收藏
页数:23
相关论文
共 49 条
  • [1] A New Zonation Algorithm with Parameter Estimation Using Hydraulic Head and Subsidence Observations
    Zhang, Meijing
    Burbey, Thomas J.
    Nunes, Vitor Dos Santos
    Borggaard, Jeff
    [J]. GROUNDWATER, 2014, 52 (04) : 514 - 524
  • [2] Determining hydraulic conductivity parameters of porous asphalt concrete using Bayesian parameter estimation
    Kook-Hwan Cho
    Sungho Mun
    [J]. KSCE Journal of Civil Engineering, 2015, 19 : 1277 - 1281
  • [3] Determining hydraulic conductivity parameters of porous asphalt concrete using Bayesian parameter estimation
    Cho, Kook-Hwan
    Mun, Sungho
    [J]. KSCE JOURNAL OF CIVIL ENGINEERING, 2015, 19 (05) : 1277 - 1281
  • [4] Bayesian Integration Using Resistivity and Lithology for Improving Estimation of Hydraulic Conductivity
    Cheng, Shih-Yang
    Hsu, Kuo-Chin
    [J]. WATER RESOURCES RESEARCH, 2021, 57 (03)
  • [5] Coupled hydrogeophysical parameter estimation using a sequential Bayesian approach
    Rings, J.
    Huisman, J. A.
    Vereecken, H.
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2010, 14 (03) : 545 - 556
  • [6] Joint Clarification of Contaminant Plume and Hydraulic Transmissivity via a Geostatistical Approach Using Hydraulic Head and Contaminant Concentration Data
    Shizuka Takai
    Taro Shimada
    Seiji Takeda
    Katsuaki Koike
    [J]. Mathematical Geosciences, 2024, 56 : 333 - 360
  • [7] Joint Clarification of Contaminant Plume and Hydraulic Transmissivity via a Geostatistical Approach Using Hydraulic Head and Contaminant Concentration Data
    Takai, Shizuka
    Shimada, Taro
    Takeda, Seiji
    Koike, Katsuaki
    [J]. MATHEMATICAL GEOSCIENCES, 2024, 56 (02) : 333 - 360
  • [8] A Bayesian framework for online parameter estimation and process adjustment using categorical observations
    Lin, Jing
    Wang, Kaibo
    [J]. IIE TRANSACTIONS, 2012, 44 (04) : 291 - 300
  • [9] Estimation of the thermal conductivity of cement composites using bayesian statistical approach
    Woo, Byeong-Hun
    Yoo, Dong-Ho
    Jeon, In-Kyu
    Kim, Jee-Sang
    Yoo, Kyung-Suk
    Kim, Hong Gi
    [J]. COMPOSITES PART B-ENGINEERING, 2022, 243
  • [10] Parameter Estimation of General Regression Neural Network Using Bayesian Approach
    Choir, Achmad Syahrul
    Prasetyo, Rindang Bangun
    Ulama, Brodjol Sutijo Suprih
    Iriawan, Nur
    Fitriasari, Kartika
    Dokhi, Mohammad
    [J]. PROCEEDINGS OF THE 7TH SEAMS UGM INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2015: ENHANCING THE ROLE OF MATHEMATICS IN INTERDISCIPLINARY RESEARCH, 2016, 1707